
Introduction
to Analysis

Robert C.
Vaughan

Ordered Fields

Inequalities

Absolute
Values

The
Continuum
Property

Introduction to Analysis
The Real Numbers

Robert C. Vaughan

January 24, 2024



Introduction
to Analysis

Robert C.
Vaughan

Ordered Fields

Inequalities

Absolute
Values

The
Continuum
Property

• We proceed by first listing a collection of axioms which
apply more generally than just to R. Indeed they will hold
for Q also.

• Since there are quite a number we will divide them into
two groups, the Arithmetic axioms and the Order axioms.

• Later we will have to decide what distinguishes R from Q
and what extra axioms might be required.
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• Definition 2.1. Arithmetic axioms for an ordered field
An ordered field F has N as a subset and the following
hold for all a, b, c ∈ F .

• Closure. There are two ways of combining elements, +
and . (or ×) so that a+ b and a.b are in F .

• Commutative axiom. a+ b = b + a, ab = ba.

• Associative axiom.
(a+ b) + c = a+ (b + c), (ab)c = a(bc).

• Distributive axiom.
a(b + c) = ab + ac , (a+ b)c = ac + bc.

• Identities. There are elements 0, 1 such that for every a

a+ 0 = a = 0 + a, a.1 = 1.a = a.

• Additive inverse. Given a there is an element (−a) ∈ F
such that a+ (−a) = (−a) + a = 0.

• Multiplicative inverse. Given a ̸= 0 there is an a−1 ∈ F
such that aa−1 = a−1a = 1.
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• From these axioms we could deduce all the usual
arithmetical properties of numbers. It would take far too
long and be far too tedious to do so. Here are some
examples.

• Example 2.1. If x + y = x + z , then y = z .

• Proof. We have

y = 0 + y identity

= ((−x) + x) + y inverse

= (−x) + (x + y) associative

= (−x) + (x + z) hypothesis

= ((−x) + x) + z associative

= 0 + z inverse

= z identity.
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• Here is another example.

• Example 2.2. Prove that for every a ∈ F we have
a.0 = 0.

• Proof We have

0 + a.a = a.a identity

= (0 + a).a distributive

= 0.a+ a.a

• The conclusion then follows from the previous example.
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• Here is yet another example.

• Example 2.3. Prove that for every x ∈ F we have
(−x)2 = x2.

• Proof We have

(−x)2 = (−x)2 + 0 identity

= (−x)2 + x .0 previous example

= (−x)2 + x((−x) + x) inverse

= (−x)2 + (x(−x) + x2) distributive

= ((−x)2 + x(−x)) + x2 associative

= ((−x) + x)(−x) + x2 distributive

= 0.(−x) + x2 identity

= 0 + x2 previous example

= x2 identity.

• Henceforward, apart perhaps from the odd exercise or
exam question we will assume that any arithmetical
operation we are used to is allowed.
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Order axioms

• Definition 2.2. Order axioms for an ordered field In an
ordered field F there is a relationship < between all
elements which satisfies the following axioms.

• O1 For every a and b in F exactly one of the following
holds.

a < b, a = b, b < a

• O2 If a, b, c ∈ F , a < b and b < c , then a < c.

• O3 If a, b, c ∈ F and a < b, then a+ c < b + c .

• O4 If a, b, c ∈ F , a < b and 0 < c , then ac < bc.

• We can then define more symbols.
Definition 2.3.
The symbol a ≤ b means a < b or a = b.

• The symbol a > b means b < a.

• The symbol a ≥ b means b ≤ a.
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• By O1 every element a of F satisfies exactly one of

a < 0, a = 0, 0 < a.

The elements with 0 < a are called the positive numbers,
and those with a < 0 are the negative numbers. These
two sets, together with the set

{0}

partition F into three disjoint sets.
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Examples

• Example 2.4. Prove that if 0 < x , then −x < 0, and that
if x < 0, then 0 < −x .

• Proof. By O3 with a = 0, b = x , c = −x we have

−x = 0 + (−x) < x + (−x) = 0,

the last equality by the definition of −x .
• The second part is left as an exercise.
• Example 2.5. Show that if x ̸= 0, then 0 < x2.
• Remark. It follows that for any x we have 0 ≤ x2.
• Proof. There are two cases. 1. If 0 < x , then by O4 with

a = 0, b = c = x we have

0 = 0.x < x .x = x2.

• 2. If x < 0, then by Example 2.4, 0 < −x and so by part
1. we have

0 < (−x)2 = x2.
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Multiplication by negatives

• We have not said anything about multiplication of
inequalities by negative numbers. There is good reason for
this because the analogue of O4
“If a, b, c ∈ F , a < b and c < 0, then ac < bc”
is false.

• In fact the order is flipped!

• This is one of the most common sources of mistakes in
mathematics.

• However, we do not need a new axiom. We can deduce
the correct conclusion from the axioms we already have.



Introduction
to Analysis

Robert C.
Vaughan

Ordered Fields

Inequalities

Absolute
Values

The
Continuum
Property

Multiplication by negatives

• We have not said anything about multiplication of
inequalities by negative numbers. There is good reason for
this because the analogue of O4
“If a, b, c ∈ F , a < b and c < 0, then ac < bc”
is false.

• In fact the order is flipped!

• This is one of the most common sources of mistakes in
mathematics.

• However, we do not need a new axiom. We can deduce
the correct conclusion from the axioms we already have.



Introduction
to Analysis

Robert C.
Vaughan

Ordered Fields

Inequalities

Absolute
Values

The
Continuum
Property

Multiplication by negatives

• We have not said anything about multiplication of
inequalities by negative numbers. There is good reason for
this because the analogue of O4
“If a, b, c ∈ F , a < b and c < 0, then ac < bc”
is false.

• In fact the order is flipped!

• This is one of the most common sources of mistakes in
mathematics.

• However, we do not need a new axiom. We can deduce
the correct conclusion from the axioms we already have.



Introduction
to Analysis

Robert C.
Vaughan

Ordered Fields

Inequalities

Absolute
Values

The
Continuum
Property

Multiplication by negatives

• We have not said anything about multiplication of
inequalities by negative numbers. There is good reason for
this because the analogue of O4
“If a, b, c ∈ F , a < b and c < 0, then ac < bc”
is false.

• In fact the order is flipped!

• This is one of the most common sources of mistakes in
mathematics.

• However, we do not need a new axiom. We can deduce
the correct conclusion from the axioms we already have.



Introduction
to Analysis

Robert C.
Vaughan

Ordered Fields

Inequalities

Absolute
Values

The
Continuum
Property

Multiplication by negatives

Theorem 1

Suppose that a < b and c < 0. Then

bc < ac .

• Proof. By Example 2.4 we have 0 < −c . Hence, by O4,

−ac = a(−c) < b(−c) = −bc.

• Now we add ac + bc to both sides. Thus, by O3,

bc = bc + 0 = bc + (ac + (−ac))

= (bc + ac) + (−ac)

< (bc + ac) + (−bc)

= (ac + bc) + (−bc)

= ac + (bc + (−bc)) = ac + 0 = ac

.
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Another important consequence is the following theorem

Theorem 2

We have
0 < 1.

• Proof. We have 1 ̸= 0. Hence 1 < 0 or 0 < 1.

• But then in either case 0 < 12 = 1.



Introduction
to Analysis

Robert C.
Vaughan

Ordered Fields

Inequalities

Absolute
Values

The
Continuum
Property

Another important consequence is the following theorem

Theorem 2

We have
0 < 1.

• Proof. We have 1 ̸= 0. Hence 1 < 0 or 0 < 1.

• But then in either case 0 < 12 = 1.



Introduction
to Analysis

Robert C.
Vaughan

Ordered Fields

Inequalities

Absolute
Values

The
Continuum
Property

Another important consequence is the following theorem

Theorem 2

We have
0 < 1.

• Proof. We have 1 ̸= 0. Hence 1 < 0 or 0 < 1.

• But then in either case 0 < 12 = 1.



Introduction
to Analysis

Robert C.
Vaughan

Ordered Fields

Inequalities

Absolute
Values

The
Continuum
Property

• Example 2.6. Suppose that x and y are positive. Prove
that x < y if and only if x2 < y2.

• Proof. Note, we have two things to prove.

• 1. If x < y , then x2 < y2.

• 2. If x2 < y2, then x < y .

• Proof of 1. We have x < y and 0 < x . Hence, by O4,

x2 = x .x < xy

• Likewise as x < y and 0 < y we have xy < y .y = y2.

• Then, by O2, x2 < xy < y2 as required.

• Proof of 2. We argue by contradiction. Thus we assume
that the conclusion is false, i.e. y ≤ x . There are two
possibilities. First y = x . Then we would have x2 = y2

contradicting the hypothesis.

• The second possibility is y < x . Then by the first part of
the theorem we would have y2 < x2 which again
contradicts the hypothesis.
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Intervals

• At this point it is convenient to remind ourselves of some
standard notation for an interval, which makes sense once
we have an ordering.

• Definition 2.4. When a ≤ b we can define various kinds
of intervals.

(a, b) = {x : a < x < b} an open interval,

[a, b] = {x : a ≤ x ≤ b} a closed interval,

[a, b) = {x : a ≤ x < b} half closed-open interval,

(a, b] = {x : a < x ≤ b} half open-closed interval,

(a,∞) = {x : a < x},
[a,∞) = {x : a ≤ x},

(−∞, b) = {x : x < b},
(−∞, b] = {x : x ≤ b}.
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Inequalities

• Inequalities are fundamental to analysis and it is desirable
to obtain some facility in their manipulation. They can be
treated like equations except for the important caveat that
multiplication by a negative number can flip an inequality.

• The following is very famous and frequently made use of.

Theorem 3 (Cauchy)

Suppose that x and y are elements of an ordered field. Then

2xy ≤ x2 + y2

• Proof. By the remark following Example 2.5 we have

0 ≤ (x − y)2 = x2 − 2xy + y2.

• Hence 2xy = 2xy + 0 ≤ 2xy + x2 − 2xy + y2 = x2 + y2.
• Strictly this should be divided into two cases, < and =,

but with greater familiarity there is less need for pedantry.
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• The following is closely related albeit more complicated.

Theorem 4 (Cauchy-Schwarz)

Suppose that a1, . . . , an and b1, . . . , bn are 2n elements of an
ordered field. Then

(a1b1 + · · ·+ anbn)
2 ≤ (a21 + · · ·+ a2n)(b

2
1 + · · ·+ b2n)

• One reason this is important is because it tells us that in
n-dimensional Euclidean space the scalar product of two
vectors is bounded by the product of their sizes
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Cauchy-Schwarz

• Proof. Let

A = a21 + · · ·+ a2n,

B = a1b1 + · · ·+ anbn,

C = b21 + · · ·+ b2n.

• If A = 0, then we have a1 = · · · = an = 0, since otherwise
at least one of the terms in A is positive and the others
are non-negative and by repeated use of the order axioms
A would have to be positive. Thus if A = 0, then B = 0
and at once

B2 = 0 ≤ AC .

• A fortiori we cannot have A < 0.

• Hence we may suppose that A > 0.
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Cauchy-Schwarz

To prove B2 ≤ AC when A > 0 where B = a1b1 + · · ·+ anbn,

A = a21 + · · ·+ a2n, C = b21 + · · ·+ b2n.

• Let x be in the field, and consider Ax2 + 2Bx + C

= a21x
2 + 2a1xb1 + b21 + · · ·+ a2nx

2 + 2anxbn + b2n

= (a1x + b1)
2 + (a2x + b2)

2 + · · ·+ (anx + bn)
2

≥ 0.

• Now multiply both sides by A. This gives

0 ≤ A2x2 + 2ABx + AC = (Ax + B)2 + AC − B2.

• Now take x = −B/A. Thus

0 ≤ AC − B2, B2 ≤ AC

as required.
• There are many different proofs of this.
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Absolute Values

• Before we can discuss anything connected with
convergence we need to know what we mean by “small”,
or to be more precise we need to have some measure of
the size of a number. The standard way for real numbers
is as follows.

• Definition 2.5. Absolute Value. Let x be an element of
an ordered field. Then we define the absolute value, or
modulus, of x by

|x | =

{
x when x ≥ 0,

−x when x < 0.

• Example 2.8

| − π| = π,

∣∣∣∣32
∣∣∣∣ = 3

2
, |0| = 0.
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Absolute Values

|x | =

{
x when x ≥ 0,

−x when x < 0.

• Note. 1. That |x | = 0 if and only if x = 0, but for any
c ̸= 0 there are two choices of x with |x | = c , namely
x = ±c .

• 2. For every x we have |x | ≥ 0.

• 3. For every x we have | − x | = |x |. To see this, separate
out the three cases x > 0, x = 0, x < 0. When x = 0 we
have | − x | = |0| = 0 = |0| = |x |. When x > 0 we have
−x < 0 and so | − x | = −(−x) = x = |x | and when x < 0
we have −x > 0 so that | − x | = −x = |x |.
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Theorem 5

For every x we have −|x | ≤ x ≤ |x |.

• Proof. Two cases.

• 1. If x ≥ 0, then

−|x | = −x ≤ 0 ≤ x = |x |.

• 2. If x < 0, then

−|x | = (−1)|x | = (−1)(−x) = x < 0 ≤ |x |.
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The very useful feature of the absolute value is that it preserves
multiplicative structure.

Theorem 6

Let a, b be elements of an ordered field. Then |ab| = |a|.|b|.

• Proof. This is a division into cases.

• There are two choices of sign for a and likewise for b, so
there should be four cases.

• 1. a ≥ 0, b ≥ 0. Then ab ≥ 0 so
|ab| = ab = a.b = |a|.|b|.

• 2. a ≥ 0, b < 0. Then

|ab| = | − (ab)| = |a(−b)| = |a|.| − b| = |a|.|b|

• 3. a < 0, b ≥ 0. Imitate 2. with a and b switched.

• 4. a < 0, b < 0. Then ab > 0 and

|ab| = ab = (−a)(−b) = |a|.|b|.
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Corollary 7

Suppose that b ̸= 0. Then ∣∣∣a
b

∣∣∣ = |a|
|b|

• Proof. We have ∣∣∣a
b

∣∣∣ |b| = ∣∣∣a
b
b
∣∣∣ = |a|.

• Since b ̸= 0 we have |b| ≠ 0 and so we can divide both
sides by |b|.
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Now we come to something we will use all the time.

Theorem 8 (The Triangle Inequality)

Suppose that x, y are elements of an ordered field. Then

|x + y | ≤ |x |+ |y |.

• Proof. We argue by contradiction. Suppose there are x
and y so that |x |+ |y | < |x + y |. Then

(|x |+ |y |)2 < |x + y |2.

• But by the definition of absolute value we have

|x + y |2 = (x + y)2 = x2 + 2xy + y2

≤ x2 + |2xy |+ y2 = |x |2 + 2|x ||y |+ |y |2

= (|x |+ |y |)2.
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• Example 2.9.

|1− 2| = | − 1| = 1 ≤ 3 = |1|+ |2|.

• The triangle inequality has important generalisations.

Theorem 9 (Generalised Triangle Inequality)

Suppose that t and u are elements of an ordered field. Then∣∣|t| − |u|
∣∣ ≤ |t − u|.

• Proof. By the triangle inequality

|t| = |t − u + u| ≤ |t − u|+ |u|.
• Hence |t| − |u| ≤ |t − u|.
• Interchanging t and u gives |u| − |t| ≤ |u − t| = |t − u|.
• But one of |t| − |u| and |u| − |t| = −(|t| − |u|) is

non-negative, so is

=
∣∣|t| − |u|

∣∣.
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• Example 2.10. Determine the set A of x such that
|2x + 3| < 7

• Proof. The simple way is to use the definition of absolute
value. There are two cases.

• 1. 2x + 3 ≥ 0. Then we also have 2x + 3 = |2x + 3| < 7.
Combining the two we need −3/2 ≤ x < (7− 3)/2 = 2.

• Thus in this case the inequality only holds when

−3

2
≤ x < 2.

• 2. 2x + 3 < 0. Now we have −2x − 3 = |2x + 3| < 7 so
that (−7− 3)/2 < x < −3/2. Thus in the second case
the inequality only holds when

−5 < x < −3/2.

• Combining the two cases we see that the inequality holds
if and only if −5 < x < 2, so

A = (−5, 2).
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• Example 2.11. Find all x such that |x + 3|+ |x − 1| = 6.

• Proof The simple way is to look at the four possible cases
for the absolute values.

• 1. x + 3 ≥ 0 and x − 1 ≥ 0. Then x ≥ −3 and x ≥ 1 so
x ≥ 1. Then the equation is

2x + 2 = x + 3 + x − 1 = 6, x = 2.

• 2. x + 3 ≥ 0 and x − 1 < 0. Then x ≥ −3 and x < 1 so
−3 ≤ x < 1. Then the equation is

4 = x + 3− (x − 1) = 6

which is impossible, so no solutions in this case.
• 3. x + 3 < 0 and x − 1 ≥ 0. Now 1 ≤ x < −3 which is
impossible, so no solutions in this case.

• 4. x + 3 < 0 and x − 1 < 0. This requires x < −3 and
x < 1, so x < −3. Then the equation is

−2x−2 = −(x+3)−(x−1) = |x+3|+|x−1| = 6, x = −4.

• Hence the complete solution is x = −4 or 2.
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We have already seen that it is possible to use ordered pairs to
construct the integers from the natural numbers and then the
rational numbers from the integers.

• Because we have to somehow build in limiting processes to
obtain the real numbers we have to do something more
sophisticated.

• There are several different ways of doing this.

• The approach we choose is essentially due to Dedekind.

• In place of ordered pairs we should, at least initially think
of real numbers as being infinite sets of rational numbers.

• Thus we could think of
√
2 as being

“
√
2” = {a ∈ Q : either (a > 0 and a2 < 2) or a ≤ 0}.

• In other words we think of
√
2 as being the set of all

rational numbers to the left of where we expect
√
2 to be.

• Then we need to show that these new objects we have
constructed can be made to satisfy all the previous axioms.
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In order to proceed systematically we need to set up some
language.

• Definition 2.6. A set S of real numbers is bounded
above when there exists a real number H such that for
every x ∈ S we have x ≤ H.

• Any such number H is called an upper bound for S.
• Example 2.12. Let S = {−3/2, π, 19}. Then 19, 19.1,
20, 100, 1060 are all upper bounds for S.

• There is a corresponding definition of bounded below.
Definition 2.7. A set S of real numbers is bounded
below when there exists a real number h such that for
every x ∈ S we have h ≤ x .

• Any such number h is called a lower bound for S.
• Definition 2.8. A set S of real numbers which is both
bounded above and bounded below is called bounded. If
it is not bounded, then it is called unbounded.

• The set S of Example 2.12 is bounded below and
bounded. The set N is unbounded (presumably - later we
will prove this).
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• Definition 2.6. A set S of real numbers is bounded
above when there exists a real number H such that for
every x ∈ S we have x ≤ H.

• Any such number H is called an upper bound for S.
• Example 2.12. Let S = {−3/2, π, 19}. Then 19, 19.1,
20, 100, 1060 are all upper bounds for S.

• There is a corresponding definition of bounded below.
Definition 2.7. A set S of real numbers is bounded
below when there exists a real number h such that for
every x ∈ S we have h ≤ x .

• Any such number h is called a lower bound for S.
• Definition 2.8. A set S of real numbers which is both
bounded above and bounded below is called bounded. If
it is not bounded, then it is called unbounded.

• The set S of Example 2.12 is bounded below and
bounded. The set N is unbounded (presumably - later we
will prove this).
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• Example 2.13. 1. {sin x : x ∈ R} is bounded because
−1 ≤ sin x ≤ 1 for every x .
2. {x2 : x ∈ R} is bounded below but unbounded.
3. A = {x : x2 − 3x + 2 < 0} is interesting.

• It is the set of x for which the polynomial
x2 − 3x + 2 = (x − 1)(x − 2) is negative.

• The factorisation shows that it is only negative when
1 < x < 2.

• Hence the set A is bounded with 1 as a lower bound and 2
as an upper bound..
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We have already suggested above that real numbers like
√
2

can be constructed through the use of a set which in some
sense is the set of all rational numbers to the left of

√
2.

• Here is another example.
Example 2.14. Can we assign a meaning to

1 +
1

22
+

1

32
+

1

42
+ · · ·?

• Look at the sum Sn after n terms, so that

S1 = 1, S2 = 1 +
1

22
,

...

Sn = 1 +
1

22
+

1

32
+

1

42
+ · · ·+ 1

n2
,

...

• Obviously

S1 < S2 < S3 < . . . < Sn < . . . .
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1 +
1

22
+

1

32
+

1

42
+ · · ·?

Sn = 1 +
1

22
+

1

32
+

1

42
+ · · ·+ 1

n2
.

• Let
A = {S1, S2,S3, . . . ,Sn, . . .}

• Suppose that A is bounded above, so there are real
numbers y such that Sn ≤ y for every n.

• Let x be the smallest such number.

• Then surely this means that the series is converging to x?

• Oh, but perhaps there is no smallest such number! Well
surely there should be.

• The job of the axiom we are missing is to ensure that
there is always a smallest such number.
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+ · · ·?

Sn = 1 +
1

22
+

1

32
+

1

42
+ · · ·+ 1

n2
.

• By the way,

Sn ≤ 1 +
1

1.2
+

1

2.3
+

1

3.4
+ · · ·+ 1

(n − 1)n

= 1 +

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n − 1
− 1

n

)
= 2− 1

n
< 2,

• so the set A is bounded above by 2.
• Actually the series is well known and converges to

π2

6
.
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The Continuum Property

Thus we can now state the axiom which distinguishes the real
numbers from the rational numbers.

• Definition 2.9. The Continuum Property. Every
non-empty subset S of R which is bounded above has a
least upper bound, also called a supremum, and we
denote it by supS.

• Example 2.15. Here are some examples

• 1. sup{1, 2, 3} = 3.

• 2. sup(1, 2) = 2.

• 3. sup(0,∞) does not exist.

• 4. sup
{
1
2 ,

3
4 , . . . , 1−

1
2n , . . .

}
= 1.

• Example 2.16. Suppose that A is s non-empty set of real
numbers which is bounded above. Then supA is unique.

• Proof. Suppose that s1 < s2 are two different suprema of
A. By the definition of supremum we have a ≤ s1 for
every a ∈ A and so s2 could not be a least upper bound.
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It is useful to deal with sets which are bounded below.

• The corresponding term is infimum.

Theorem 10

Suppose that B is a non-empty set of real numbers which is
bounded below. Then B has a greatest lower bound.

• Proof. Let A = {−b : b ∈ B} and h be a lower bound for
B, so h ≤ b for every b ∈ B.

• Then by Theorem 1, −b = (−1)b ≤ (−1)h = −h for
every b ∈ B.

• Hence −h ia an upper bound for A
• Thus it has a supremum, s, s ≥ −b for every b ∈ B and

−s ≤ b for every b in B.
• We show that there can be no larger lower bound.

• Suppose on the contrary that there is a t > −s such that
t is a lower bound for B. i.e. for every b ∈ B. Then
−b ≤ −t < s. Thus −t would be a lower upper bound for
A than its supremum s which is absurd.
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• Then by Theorem 1, −b = (−1)b ≤ (−1)h = −h for
every b ∈ B.

• Hence −h ia an upper bound for A

• Thus it has a supremum, s, s ≥ −b for every b ∈ B and
−s ≤ b for every b in B.

• We show that there can be no larger lower bound.

• Suppose on the contrary that there is a t > −s such that
t is a lower bound for B. i.e. for every b ∈ B. Then
−b ≤ −t < s. Thus −t would be a lower upper bound for
A than its supremum s which is absurd.
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• Before moving on to study the properties of the real
numbers we just give an inkling of how it is possible to
pull over to R the various axioms which are satisfied by Q

Theorem 11

Suppose that A is a non-empty set of real numbers which is
bounded above, y > 0 and B = {ya : a ∈ A}. Then supB
exists and supB = y supA.

• Proof. Since A is non-empty, so is B.
• Moreover if H is an upper bound for A, then yH is an

upper bound for B.
• Hence s = supA and t = supB both exist.

• Moreover sy will be an upper bound for B and t/y will be
an upper bound for A.

• Hence t ≤ sy and s ≤ t/y ≤ s, whence t = ys.
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