Introduction to Analysis

The Real Numbers

Robert C. Vaughan

January 24, 2024

Introduction to Analysis

Robert C. Vaughan

- We proceed by first listing a collection of axioms which apply more generally than just to \mathbb{R}. Indeed they will hold for \mathbb{Q} also.
- We proceed by first listing a collection of axioms which apply more generally than just to \mathbb{R}. Indeed they will hold for \mathbb{Q} also.
- Since there are quite a number we will divide them into two groups, the Arithmetic axioms and the Order axioms.
- We proceed by first listing a collection of axioms which apply more generally than just to \mathbb{R}. Indeed they will hold for \mathbb{Q} also.
- Since there are quite a number we will divide them into two groups, the Arithmetic axioms and the Order axioms.
- Later we will have to decide what distinguishes \mathbb{R} from \mathbb{Q} and what extra axioms might be required.

Robert C.
Vaughan

- Definition 2.1. Arithmetic axioms for an ordered field An ordered field \mathcal{F} has \mathbb{N} as a subset and the following hold for all $a, b, c \in \mathcal{F}$.

Ordered Fields

- Definition 2.1. Arithmetic axioms for an ordered field An ordered field \mathcal{F} has \mathbb{N} as a subset and the following hold for all $a, b, c \in \mathcal{F}$.
- Closure. There are two ways of combining elements, + and. ($\operatorname{or} \times$) so that $a+b$ and $a . b$ are in \mathcal{F}.
- Definition 2.1. Arithmetic axioms for an ordered field An ordered field \mathcal{F} has \mathbb{N} as a subset and the following hold for all $a, b, c \in \mathcal{F}$.
- Closure. There are two ways of combining elements, + and. ($\operatorname{or} \times$) so that $a+b$ and $a . b$ are in \mathcal{F}.
- Commutative axiom. $a+b=b+a, \quad a b=b a$.
- Definition 2.1. Arithmetic axioms for an ordered field An ordered field \mathcal{F} has \mathbb{N} as a subset and the following hold for all $a, b, c \in \mathcal{F}$.
- Closure. There are two ways of combining elements, + and. ($\mathrm{or} \times$) so that $a+b$ and $a . b$ are in \mathcal{F}.
- Commutative axiom. $a+b=b+a, \quad a b=b a$.
- Associative axiom.

$$
(a+b)+c=a+(b+c), \quad(a b) c=a(b c)
$$

- Definition 2.1. Arithmetic axioms for an ordered field An ordered field \mathcal{F} has \mathbb{N} as a subset and the following hold for all $a, b, c \in \mathcal{F}$.
- Closure. There are two ways of combining elements, + and. ($\mathrm{or} \times$) so that $a+b$ and $a . b$ are in \mathcal{F}.
- Commutative axiom. $a+b=b+a, \quad a b=b a$.
- Associative axiom.

$$
(a+b)+c=a+(b+c), \quad(a b) c=a(b c)
$$

- Distributive axiom.

$$
a(b+c)=a b+a c, \quad(a+b) c=a c+b c
$$

- Definition 2.1. Arithmetic axioms for an ordered field An ordered field \mathcal{F} has \mathbb{N} as a subset and the following hold for all $a, b, c \in \mathcal{F}$.
- Closure. There are two ways of combining elements, + and. ($\mathrm{or} \times$) so that $a+b$ and $a . b$ are in \mathcal{F}.
- Commutative axiom. $a+b=b+a, \quad a b=b a$.
- Associative axiom.

$$
(a+b)+c=a+(b+c), \quad(a b) c=a(b c)
$$

- Distributive axiom.

$$
a(b+c)=a b+a c, \quad(a+b) c=a c+b c
$$

- Identities. There are elements 0,1 such that for every a

$$
a+0=a=0+a, \quad a \cdot 1=1 . a=a .
$$

- Definition 2.1. Arithmetic axioms for an ordered field An ordered field \mathcal{F} has \mathbb{N} as a subset and the following hold for all $a, b, c \in \mathcal{F}$.
- Closure. There are two ways of combining elements, + and. ($\mathrm{or} \times$) so that $a+b$ and $a . b$ are in \mathcal{F}.
- Commutative axiom. $a+b=b+a, \quad a b=b a$.
- Associative axiom.

$$
(a+b)+c=a+(b+c), \quad(a b) c=a(b c)
$$

- Distributive axiom.

$$
a(b+c)=a b+a c, \quad(a+b) c=a c+b c
$$

- Identities. There are elements 0,1 such that for every a

$$
a+0=a=0+a, \quad a \cdot 1=1 . a=a .
$$

- Additive inverse. Given a there is an element $(-a) \in \mathcal{F}$ such that $a+(-a)=(-a)+a=0$.
- Definition 2.1. Arithmetic axioms for an ordered field An ordered field \mathcal{F} has \mathbb{N} as a subset and the following hold for all $a, b, c \in \mathcal{F}$.
- Closure. There are two ways of combining elements, + and. (or \times) so that $a+b$ and $a . b$ are in \mathcal{F}.
- Commutative axiom. $a+b=b+a, \quad a b=b a$.
- Associative axiom.

$$
(a+b)+c=a+(b+c), \quad(a b) c=a(b c)
$$

- Distributive axiom.

$$
a(b+c)=a b+a c, \quad(a+b) c=a c+b c .
$$

- Identities. There are elements 0,1 such that for every a

$$
a+0=a=0+a, \quad a \cdot 1=1 . a=a .
$$

- Additive inverse. Given a there is an element $(-a) \in \mathcal{F}$ such that $a+(-a)=(-a)+a=0$.
- Multiplicative inverse. Given $a \neq 0$ there is an $a^{-1} \in \mathcal{F}$ such that $a a^{-1}=a^{-1} a=1$.

Inequalities
Absolute Values

- From these axioms we could deduce all the usual arithmetical properties of numbers. It would take far too long and be far too tedious to do so. Here are some examples.
- From these axioms we could deduce all the usual arithmetical properties of numbers. It would take far too long and be far too tedious to do so. Here are some examples.
- Example 2.1. If $x+y=x+z$, then $y=z$.
- From these axioms we could deduce all the usual arithmetical properties of numbers. It would take far too long and be far too tedious to do so. Here are some examples.
- Example 2.1. If $x+y=x+z$, then $y=z$.
- Proof. We have

$$
\begin{aligned}
y & =0+y \\
& =((-x)+x)+y \\
& =(-x)+(x+y) \\
& =(-x)+(x+z) \\
& =((-x)+x)+z \\
& =0+z \\
& =z
\end{aligned}
$$

identity inverse
associative
hypothesis
associative
inverse
identity.

```
Introduction
- Here is another example.
```

- Here is another example.
- Example 2.2. Prove that for every $a \in \mathcal{F}$ we have $a .0=0$.
- Here is another example.
- Example 2.2. Prove that for every $a \in \mathcal{F}$ we have $a .0=0$.
- Proof We have

$$
\begin{aligned}
0+a \cdot a & =a \cdot a \\
& =(0+a) \cdot a \\
& =0 \cdot a+a \cdot a
\end{aligned}
$$

identity
distributive

- Here is another example.
- Example 2.2. Prove that for every $a \in \mathcal{F}$ we have $a .0=0$.
- Proof We have

$$
\begin{aligned}
0+a \cdot a & =a \cdot a \\
& =(0+a) \cdot a \\
& =0 \cdot a+a \cdot a
\end{aligned}
$$

- The conclusion then follows from the previous example.

```
Introduction
to Analysis
Robert C.
Vaughan
Ordered Fields
Inequalities
Absolute
Values
- Here is yet another example.

Introduction to Analysis

Robert C. Vaughan
- Here is yet another example.
- Example 2.3. Prove that for every \(x \in \mathcal{F}\) we have \((-x)^{2}=x^{2}\).

\author{
Ordered Fields
}

\section*{Inequalities}

Absolute Values
- Here is yet another example.
- Example 2.3. Prove that for every \(x \in \mathcal{F}\) we have \((-x)^{2}=x^{2}\).
- Proof We have
\[
\begin{aligned}
(-x)^{2} & =(-x)^{2}+0 \\
& =(-x)^{2}+x .0 \\
& =(-x)^{2}+x((-x)+x) \\
& =(-x)^{2}+\left(x(-x)+x^{2}\right) \\
& =\left((-x)^{2}+x(-x)\right)+x^{2} \\
& =((-x)+x)(-x)+x^{2} \\
& =0 .(-x)+x^{2} \\
& =0+x^{2} \\
& =x^{2}
\end{aligned}
\]
identity
previous example inverse distributive associative distributive identity previous example identity.
identity previous example inverse distributive associative distributive identity previous example identity.
- Henceforward, apart perhaps from the odd exercise or exam question we will assume that any arithmetical operation we are used to is allowed,

\section*{Order axioms}
- Definition 2.2. Order axioms for an ordered field In an ordered field \(\mathcal{F}\) there is a relationship < between all elements which satisfies the following axioms.

\section*{Order axioms}

Robert C.
Vaughan
- Definition 2.2. Order axioms for an ordered field In an ordered field \(\mathcal{F}\) there is a relationship < between all elements which satisfies the following axioms.
- O1 For every \(a\) and \(b\) in \(\mathcal{F}\) exactly one of the following holds.
\[
a<b, a=b, b<a
\]

\section*{Order axioms}

Robert C.
Vaughan
- Definition 2.2. Order axioms for an ordered field In an ordered field \(\mathcal{F}\) there is a relationship < between all elements which satisfies the following axioms.
- O1 For every \(a\) and \(b\) in \(\mathcal{F}\) exactly one of the following holds.
\[
a<b, a=b, b<a
\]
- O2 If \(a, b, c \in \mathcal{F}, a<b\) and \(b<c\), then \(a<c\).

\section*{Order axioms}
- Definition 2.2. Order axioms for an ordered field In an ordered field \(\mathcal{F}\) there is a relationship < between all elements which satisfies the following axioms.
- O1 For every \(a\) and \(b\) in \(\mathcal{F}\) exactly one of the following holds.
\[
a<b, a=b, b<a
\]
- 02 If \(a, b, c \in \mathcal{F}, a<b\) and \(b<c\), then \(a<c\).
- O3 If \(a, b, c \in \mathcal{F}\) and \(a<b\), then \(a+c<b+c\).

\section*{Order axioms}
- Definition 2.2. Order axioms for an ordered field In an ordered field \(\mathcal{F}\) there is a relationship < between all elements which satisfies the following axioms.
- O1 For every \(a\) and \(b\) in \(\mathcal{F}\) exactly one of the following holds.
\[
a<b, a=b, b<a
\]
- 02 If \(a, b, c \in \mathcal{F}, a<b\) and \(b<c\), then \(a<c\).
- O3 If \(a, b, c \in \mathcal{F}\) and \(a<b\), then \(a+c<b+c\).
- O4 If \(a, b, c \in \mathcal{F}, a<b\) and \(0<c\), then \(a c<b c\).

\section*{Order axioms}
- Definition 2.2. Order axioms for an ordered field In an ordered field \(\mathcal{F}\) there is a relationship < between all elements which satisfies the following axioms.
- O1 For every \(a\) and \(b\) in \(\mathcal{F}\) exactly one of the following holds.
\[
a<b, a=b, b<a
\]
- O2 If \(a, b, c \in \mathcal{F}, a<b\) and \(b<c\), then \(a<c\).
- O3 If \(a, b, c \in \mathcal{F}\) and \(a<b\), then \(a+c<b+c\).
- O4 If \(a, b, c \in \mathcal{F}, a<b\) and \(0<c\), then \(a c<b c\).
- We can then define more symbols. Definition 2.3.
The symbol \(a \leq b\) means \(a<b\) or \(a=b\).

\section*{Order axioms}
- Definition 2.2. Order axioms for an ordered field In an ordered field \(\mathcal{F}\) there is a relationship < between all elements which satisfies the following axioms.
- O1 For every \(a\) and \(b\) in \(\mathcal{F}\) exactly one of the following holds.
\[
a<b, a=b, b<a
\]
- O2 If \(a, b, c \in \mathcal{F}, a<b\) and \(b<c\), then \(a<c\).
- O3 If \(a, b, c \in \mathcal{F}\) and \(a<b\), then \(a+c<b+c\).
- O4 If \(a, b, c \in \mathcal{F}, a<b\) and \(0<c\), then \(a c<b c\).
- We can then define more symbols.

\section*{Definition 2.3.}

The symbol \(a \leq b\) means \(a<b\) or \(a=b\).
- The symbol \(a>b\) means \(b<a\).

\section*{Order axioms}
- Definition 2.2. Order axioms for an ordered field In an ordered field \(\mathcal{F}\) there is a relationship < between all elements which satisfies the following axioms.
- O1 For every \(a\) and \(b\) in \(\mathcal{F}\) exactly one of the following holds.
\[
a<b, a=b, b<a
\]
- O2 If \(a, b, c \in \mathcal{F}, a<b\) and \(b<c\), then \(a<c\).
- O3 If \(a, b, c \in \mathcal{F}\) and \(a<b\), then \(a+c<b+c\).
- O4 If \(a, b, c \in \mathcal{F}, a<b\) and \(0<c\), then \(a c<b c\).
- We can then define more symbols.

\section*{Definition 2.3.}

The symbol \(a \leq b\) means \(a<b\) or \(a=b\).
- The symbol \(a>b\) means \(b<a\).
- The symbol \(a \geq b\) means \(b \leq a\).
- By \(\mathbf{0 1}\) every element \(a\) of \(\mathcal{F}\) satisfies exactly one of
\[
a<0, a=0,0<a .
\]

The elements with \(0<a\) are called the positive numbers, and those with \(a<0\) are the negative numbers. These two sets, together with the set
\[
\{0\}
\]
partition \(\mathcal{F}\) into three disjoint sets.

\section*{Examples}

Robert C.
Vaughan

\author{
Ordered Fields
}

Inequalities
Absolute Values
- Example 2.4. Prove that if \(0<x\), then \(-x<0\), and that if \(x<0\), then \(0<-x\).

\section*{Examples}

Robert C.
Vaughan
- Example 2.4. Prove that if \(0<x\), then \(-x<0\), and that if \(x<0\), then \(0<-x\).
- Proof. By \(\mathbf{O 3}\) with \(a=0, b=x, c=-x\) we have
\[
-x=0+(-x)<x+(-x)=0
\]
the last equality by the definition of \(-x\).

\section*{Examples}

Robert C.
Vaughan
- Example 2.4. Prove that if \(0<x\), then \(-x<0\), and that if \(x<0\), then \(0<-x\).
- Proof. By \(\mathbf{O 3}\) with \(a=0, b=x, c=-x\) we have
\[
-x=0+(-x)<x+(-x)=0
\]
the last equality by the definition of \(-x\).
- The second part is left as an exercise.

\section*{Examples}

Robert C.
Vaughan
- Example 2.4. Prove that if \(0<x\), then \(-x<0\), and that if \(x<0\), then \(0<-x\).
- Proof. By \(\mathbf{O 3}\) with \(a=0, b=x, c=-x\) we have
\[
-x=0+(-x)<x+(-x)=0
\]
the last equality by the definition of \(-x\).
- The second part is left as an exercise.
- Example 2.5. Show that if \(x \neq 0\), then \(0<x^{2}\).

\section*{Examples}

Robert C.
Vaughan
- Example 2.4. Prove that if \(0<x\), then \(-x<0\), and that if \(x<0\), then \(0<-x\).
- Proof. By \(\mathbf{O 3}\) with \(a=0, b=x, c=-x\) we have
\[
-x=0+(-x)<x+(-x)=0
\]
the last equality by the definition of \(-x\).
- The second part is left as an exercise.
- Example 2.5. Show that if \(x \neq 0\), then \(0<x^{2}\).
- Remark. It follows that for any \(x\) we have \(0 \leq x^{2}\).

\section*{Examples}

Robert C.
Vaughan
- Example 2.4. Prove that if \(0<x\), then \(-x<0\), and that if \(x<0\), then \(0<-x\).
- Proof. By \(\mathbf{O 3}\) with \(a=0, b=x, c=-x\) we have
\[
-x=0+(-x)<x+(-x)=0
\]
the last equality by the definition of \(-x\).
- The second part is left as an exercise.
- Example 2.5. Show that if \(x \neq 0\), then \(0<x^{2}\).
- Remark. It follows that for any \(x\) we have \(0 \leq x^{2}\).
- Proof. There are two cases. 1. If \(0<x\), then by \(\mathbf{O 4}\) with \(a=0, b=c=x\) we have
\[
0=0 . x<x \cdot x=x^{2}
\]

\section*{Examples}

Robert C.
Vaughan
- Example 2.4. Prove that if \(0<x\), then \(-x<0\), and that if \(x<0\), then \(0<-x\).
- Proof. By \(\mathbf{O 3}\) with \(a=0, b=x, c=-x\) we have
\[
-x=0+(-x)<x+(-x)=0
\]
the last equality by the definition of \(-x\).
- The second part is left as an exercise.
- Example 2.5. Show that if \(x \neq 0\), then \(0<x^{2}\).
- Remark. It follows that for any \(x\) we have \(0 \leq x^{2}\).
- Proof. There are two cases. 1. If \(0<x\), then by \(\mathbf{O 4}\) with \(a=0, b=c=x\) we have
\[
0=0 . x<x \cdot x=x^{2}
\]
- 2. If \(x<0\), then by Example 2.4, \(0<-x\) and so by part 1. we have
\[
0<(-x)^{2}=x^{2}
\]

\section*{Multiplication by negatives}

Robert C.
Vaughan
- We have not said anything about multiplication of inequalities by negative numbers. There is good reason for this because the analogue of \(\mathbf{O 4}\)
"If \(a, b, c \in \mathcal{F}, a<b\) and \(c<0\), then \(a c<b c\) " is false.

\section*{Multiplication by negatives}

Robert C.
Vaughan
- We have not said anything about multiplication of inequalities by negative numbers. There is good reason for this because the analogue of \(\mathbf{O 4}\)
"If \(a, b, c \in \mathcal{F}, a<b\) and \(c<0\), then \(a c<b c\) " is false.
- In fact the order is flipped!

\section*{Multiplication by negatives}

Robert C.
Vaughan
- We have not said anything about multiplication of inequalities by negative numbers. There is good reason for this because the analogue of \(\mathbf{O 4}\)
"If \(a, b, c \in \mathcal{F}, a<b\) and \(c<0\), then \(a c<b c\) " is false.
- In fact the order is flipped!
- This is one of the most common sources of mistakes in mathematics.

\section*{Multiplication by negatives}

Robert C.
Vaughan
- We have not said anything about multiplication of inequalities by negative numbers. There is good reason for this because the analogue of \(\mathbf{O 4}\)
"If \(a, b, c \in \mathcal{F}, a<b\) and \(c<0\), then \(a c<b c\) " is false.
- In fact the order is flipped!
- This is one of the most common sources of mistakes in mathematics.
- However, we do not need a new axiom. We can deduce the correct conclusion from the axioms we already have.

Introduction to Analysis

Robert C.
Vaughan
Ordered Fields
Inequalities
Absolute Values

\section*{Theorem 1 \\ Suppose that \(a<b\) and \(c<0\). Then \\ \[
b c<a c
\]}

\section*{Multiplication by negatives}

\section*{Theorem 1}

Suppose that \(a<b\) and \(c<0\). Then
\[
b c<a c
\]
- Proof. By Example 2.4 we have \(0<-c\). Hence, by O4,
\[
-a c=a(-c)<b(-c)=-b c .
\]

\section*{Multiplication by negatives}

\section*{Theorem 1}

Suppose that \(a<b\) and \(c<0\). Then
\[
b c<a c
\]
- Proof. By Example 2.4 we have \(0<-c\). Hence, by O4,
\[
-a c=a(-c)<b(-c)=-b c .
\]
- Now we add \(a c+b c\) to both sides. Thus, by O3,
\[
\begin{aligned}
b c & =b c+0=b c+(a c+(-a c)) \\
& =(b c+a c)+(-a c) \\
& <(b c+a c)+(-b c) \\
& =(a c+b c)+(-b c) \\
& =a c+(b c+(-b c))=a c+0=a c
\end{aligned}
\]
Another important consequence is the following theorem
Theorem 2
We have
\[
0<1
\]
```

Another important consequence is the following theorem
Theorem 2
We have

$$
0<1
$$

- Proof. We have $1 \neq 0$. Hence $1<0$ or $0<1$.

Another important consequence is the following theorem
Theorem 2
We have

$$
0<1
$$

- Proof. We have $1 \neq 0$. Hence $1<0$ or $0<1$.
- But then in either case $0<1^{2}=1$.

Introduction to Analysis

Robert C. Vaughan

Ordered Fields

Inequalities

Absolute

 Values- Example 2.6. Suppose that x and y are positive. Prove that $x<y$ if and only if $x^{2}<y^{2}$.

Robert C. Vaughan

- Example 2.6. Suppose that x and y are positive. Prove that $x<y$ if and only if $x^{2}<y^{2}$.
- Proof. Note, we have two things to prove.

Ordered Fields

- Example 2.6. Suppose that x and y are positive. Prove that $x<y$ if and only if $x^{2}<y^{2}$.
- Proof. Note, we have two things to prove.
- 1. If $x<y$, then $x^{2}<y^{2}$.
- Example 2.6. Suppose that x and y are positive. Prove that $x<y$ if and only if $x^{2}<y^{2}$.
- Proof. Note, we have two things to prove.
- 1. If $x<y$, then $x^{2}<y^{2}$.
- 2. If $x^{2}<y^{2}$, then $x<y$.

Absolute

 Values- Example 2.6. Suppose that x and y are positive. Prove that $x<y$ if and only if $x^{2}<y^{2}$.
- Proof. Note, we have two things to prove.
- 1. If $x<y$, then $x^{2}<y^{2}$.
- 2. If $x^{2}<y^{2}$, then $x<y$.
- Proof of 1 . We have $x<y$ and $0<x$. Hence, by O4,

$$
x^{2}=x \cdot x<x y
$$

- Example 2.6. Suppose that x and y are positive. Prove that $x<y$ if and only if $x^{2}<y^{2}$.
- Proof. Note, we have two things to prove.
- 1. If $x<y$, then $x^{2}<y^{2}$.
- 2. If $x^{2}<y^{2}$, then $x<y$.
- Proof of 1 . We have $x<y$ and $0<x$. Hence, by O4,

$$
x^{2}=x \cdot x<x y
$$

- Likewise as $x<y$ and $0<y$ we have $x y<y \cdot y=y^{2}$.
- Example 2.6. Suppose that x and y are positive. Prove that $x<y$ if and only if $x^{2}<y^{2}$.
- Proof. Note, we have two things to prove.
- 1. If $x<y$, then $x^{2}<y^{2}$.
- 2. If $x^{2}<y^{2}$, then $x<y$.
- Proof of 1 . We have $x<y$ and $0<x$. Hence, by O4,

$$
x^{2}=x \cdot x<x y
$$

- Likewise as $x<y$ and $0<y$ we have $x y<y \cdot y=y^{2}$.
- Then, by O2, $x^{2}<x y<y^{2}$ as required.
- Example 2.6. Suppose that x and y are positive. Prove that $x<y$ if and only if $x^{2}<y^{2}$.
- Proof. Note, we have two things to prove.
- 1. If $x<y$, then $x^{2}<y^{2}$.
- 2. If $x^{2}<y^{2}$, then $x<y$.
- Proof of 1 . We have $x<y$ and $0<x$. Hence, by O4,

$$
x^{2}=x \cdot x<x y
$$

- Likewise as $x<y$ and $0<y$ we have $x y<y \cdot y=y^{2}$.
- Then, by O2, $x^{2}<x y<y^{2}$ as required.
- Proof of 2. We argue by contradiction. Thus we assume that the conclusion is false, i.e. $y \leq x$. There are two possibilities. First $y=x$. Then we would have $x^{2}=y^{2}$ contradicting the hypothesis.
- Example 2.6. Suppose that x and y are positive. Prove that $x<y$ if and only if $x^{2}<y^{2}$.
- Proof. Note, we have two things to prove.
- 1. If $x<y$, then $x^{2}<y^{2}$.
- 2. If $x^{2}<y^{2}$, then $x<y$.
- Proof of 1 . We have $x<y$ and $0<x$. Hence, by O4,

$$
x^{2}=x \cdot x<x y
$$

- Likewise as $x<y$ and $0<y$ we have $x y<y \cdot y=y^{2}$.
- Then, by O2, $x^{2}<x y<y^{2}$ as required.
- Proof of 2. We argue by contradiction. Thus we assume that the conclusion is false, i.e. $y \leq x$. There are two possibilities. First $y=x$. Then we would have $x^{2}=y^{2}$ contradicting the hypothesis.
- The second possibility is $y<x$. Then by the first part of the theorem we would have $y^{2}<x^{2}$ which again contradicts the hypothesis.

Intervals

Robert C .
Vaughan

- At this point it is convenient to remind ourselves of some standard notation for an interval, which makes sense once we have an ordering.

Intervals

- At this point it is convenient to remind ourselves of some standard notation for an interval, which makes sense once we have an ordering.
- Definition 2.4. When $a \leq b$ we can define various kinds of intervals.

$$
\begin{array}{rlr}
(a, b) & =\{x: a<x<b\} & \text { an open interval, } \\
{[a, b]} & =\{x: a \leq x \leq b\} & \text { a closed interval, } \\
{[a, b)} & =\{x: a \leq x<b\} & \text { half closed-open interval, } \\
(a, b] & =\{x: a<x \leq b\} & \text { half open-closed interval, } \\
(a, \infty) & =\{x: a<x\}, \\
(-\infty) & =\{x: a \leq x\}, \\
(-\infty) & =\{x: x<b\} & =\{x: x \leq b\} .
\end{array}
$$

Inequalities

Robert C.
Vaughan

- Inequalities are fundamental to analysis and it is desirable to obtain some facility in their manipulation. They can be treated like equations except for the important caveat that multiplication by a negative number can flip an inequality.

Inequalities

Robert C.
Vaughan

- Inequalities are fundamental to analysis and it is desirable to obtain some facility in their manipulation. They can be treated like equations except for the important caveat that multiplication by a negative number can flip an inequality.
- The following is very famous and frequently made use of.

Theorem 3 (Cauchy)

Suppose that x and y are elements of an ordered field. Then

$$
2 x y \leq x^{2}+y^{2}
$$

Inequalities

Robert C.
Vaughan

- Inequalities are fundamental to analysis and it is desirable to obtain some facility in their manipulation. They can be treated like equations except for the important caveat that multiplication by a negative number can flip an inequality.
- The following is very famous and frequently made use of.

Theorem 3 (Cauchy)

Suppose that x and y are elements of an ordered field. Then

$$
2 x y \leq x^{2}+y^{2}
$$

- Proof. By the remark following Example 2.5 we have

$$
0 \leq(x-y)^{2}=x^{2}-2 x y+y^{2}
$$

Inequalities

Robert C.
Vaughan

- Inequalities are fundamental to analysis and it is desirable to obtain some facility in their manipulation. They can be treated like equations except for the important caveat that multiplication by a negative number can flip an inequality.
- The following is very famous and frequently made use of.

Theorem 3 (Cauchy)
Suppose that x and y are elements of an ordered field. Then

$$
2 x y \leq x^{2}+y^{2}
$$

- Proof. By the remark following Example 2.5 we have

$$
0 \leq(x-y)^{2}=x^{2}-2 x y+y^{2}
$$

- Hence $2 x y=2 x y+0 \leq 2 x y+x^{2}-2 x y+y^{2}=x^{2}+y^{2}$.

Inequalities

Robert C.
Vaughan

- Inequalities are fundamental to analysis and it is desirable to obtain some facility in their manipulation. They can be treated like equations except for the important caveat that multiplication by a negative number can flip an inequality.
- The following is very famous and frequently made use of.

Theorem 3 (Cauchy)
Suppose that x and y are elements of an ordered field. Then

$$
2 x y \leq x^{2}+y^{2}
$$

- Proof. By the remark following Example 2.5 we have

$$
0 \leq(x-y)^{2}=x^{2}-2 x y+y^{2}
$$

- Hence $2 x y=2 x y+0 \leq 2 x y+x^{2}-2 x y+y^{2}=x^{2}+y^{2}$.
- Strictly this should be divided into two cases, $<$ and $=$, but with greater familiarity there is less need for pedantry

Inequalities

Robert C.
Vaughan

- The following is closely related albeit more complicated.

Theorem 4 (Cauchy-Schwarz)

Suppose that a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} are $2 n$ elements of an ordered field. Then

$$
\left(a_{1} b_{1}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+\cdots+b_{n}^{2}\right)
$$

Inequalities

- The following is closely related albeit more complicated.

Theorem 4 (Cauchy-Schwarz)

Suppose that a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} are $2 n$ elements of an ordered field. Then

$$
\left(a_{1} b_{1}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+\cdots+b_{n}^{2}\right)
$$

- One reason this is important is because it tells us that in n-dimensional Euclidean space the scalar product of two vectors is bounded by the product of their sizes

Cauchy-Schwarz

Robert C. Vaughan

- Proof. Let

Ordered Fields
Inequalities
Absolute Values
The Continuum Property

$$
\begin{aligned}
& A=a_{1}^{2}+\cdots+a_{n}^{2}, \\
& B=a_{1} b_{1}+\cdots+a_{n} b_{n}, \\
& C=b_{1}^{2}+\cdots+b_{n}^{2} .
\end{aligned}
$$

Cauchy-Schwarz

Robert C.
Vaughan

- Proof. Let

$$
\begin{aligned}
& A=a_{1}^{2}+\cdots+a_{n}^{2}, \\
& B=a_{1} b_{1}+\cdots+a_{n} b_{n}, \\
& C=b_{1}^{2}+\cdots+b_{n}^{2} .
\end{aligned}
$$

- If $A=0$, then we have $a_{1}=\cdots=a_{n}=0$, since otherwise at least one of the terms in A is positive and the others are non-negative and by repeated use of the order axioms A would have to be positive. Thus if $A=0$, then $B=0$ and at once

$$
B^{2}=0 \leq A C
$$

Cauchy-Schwarz

- Proof. Let

$$
\begin{aligned}
& A=a_{1}^{2}+\cdots+a_{n}^{2} \\
& B=a_{1} b_{1}+\cdots+a_{n} b_{n} \\
& C=b_{1}^{2}+\cdots+b_{n}^{2} .
\end{aligned}
$$

- If $A=0$, then we have $a_{1}=\cdots=a_{n}=0$, since otherwise at least one of the terms in A is positive and the others are non-negative and by repeated use of the order axioms A would have to be positive. Thus if $A=0$, then $B=0$ and at once

$$
B^{2}=0 \leq A C
$$

- A fortiori we cannot have $A<0$.

Cauchy-Schwarz

- Proof. Let

$$
\begin{aligned}
& A=a_{1}^{2}+\cdots+a_{n}^{2} \\
& B=a_{1} b_{1}+\cdots+a_{n} b_{n} \\
& C=b_{1}^{2}+\cdots+b_{n}^{2} .
\end{aligned}
$$

- If $A=0$, then we have $a_{1}=\cdots=a_{n}=0$, since otherwise at least one of the terms in A is positive and the others are non-negative and by repeated use of the order axioms A would have to be positive. Thus if $A=0$, then $B=0$ and at once

$$
B^{2}=0 \leq A C
$$

- A fortiori we cannot have $A<0$.
- Hence we may suppose that $A>0$.

Cauchy-Schwarz

Robert C.
Vaughan

Ordered Fields

 Inequalities
Absolute

 ValuesTo prove $B^{2} \leq A C$ when $A>0$ where $B=a_{1} b_{1}+\cdots+a_{n} b_{n}$,

$$
A=a_{1}^{2}+\cdots+a_{n}^{2}, \quad C=b_{1}^{2}+\cdots+b_{n}^{2} .
$$

Cauchy-Schwarz

Robert C.
Vaughan
To prove $B^{2} \leq A C$ when $A>0$ where $B=a_{1} b_{1}+\cdots+a_{n} b_{n}$,

$$
A=a_{1}^{2}+\cdots+a_{n}^{2}, \quad C=b_{1}^{2}+\cdots+b_{n}^{2} .
$$

- Let x be in the field, and consider $A x^{2}+2 B x+C$

$$
\begin{aligned}
& =a_{1}^{2} x^{2}+2 a_{1} x b_{1}+b_{1}^{2}+\cdots+a_{n}^{2} x^{2}+2 a_{n} x b_{n}+b_{n}^{2} \\
& =\left(a_{1} x+b_{1}\right)^{2}+\left(a_{2} x+b_{2}\right)^{2}+\cdots+\left(a_{n} x+b_{n}\right)^{2} \\
& \geq 0 .
\end{aligned}
$$

Cauchy-Schwarz

To prove $B^{2} \leq A C$ when $A>0$ where $B=a_{1} b_{1}+\cdots+a_{n} b_{n}$,

$$
A=a_{1}^{2}+\cdots+a_{n}^{2}, \quad C=b_{1}^{2}+\cdots+b_{n}^{2} .
$$

- Let x be in the field, and consider $A x^{2}+2 B x+C$

$$
\begin{aligned}
& =a_{1}^{2} x^{2}+2 a_{1} x b_{1}+b_{1}^{2}+\cdots+a_{n}^{2} x^{2}+2 a_{n} x b_{n}+b_{n}^{2} \\
& =\left(a_{1} x+b_{1}\right)^{2}+\left(a_{2} x+b_{2}\right)^{2}+\cdots+\left(a_{n} x+b_{n}\right)^{2} \\
& \geq 0 .
\end{aligned}
$$

- Now multiply both sides by A. This gives

$$
0 \leq A^{2} x^{2}+2 A B x+A C=(A x+B)^{2}+A C-B^{2}
$$

Cauchy-Schwarz

To prove $B^{2} \leq A C$ when $A>0$ where $B=a_{1} b_{1}+\cdots+a_{n} b_{n}$,

$$
A=a_{1}^{2}+\cdots+a_{n}^{2}, \quad C=b_{1}^{2}+\cdots+b_{n}^{2} .
$$

- Let x be in the field, and consider $A x^{2}+2 B x+C$

$$
\begin{aligned}
& =a_{1}^{2} x^{2}+2 a_{1} x b_{1}+b_{1}^{2}+\cdots+a_{n}^{2} x^{2}+2 a_{n} x b_{n}+b_{n}^{2} \\
& =\left(a_{1} x+b_{1}\right)^{2}+\left(a_{2} x+b_{2}\right)^{2}+\cdots+\left(a_{n} x+b_{n}\right)^{2} \\
& \geq 0 .
\end{aligned}
$$

- Now multiply both sides by A. This gives

$$
0 \leq A^{2} x^{2}+2 A B x+A C=(A x+B)^{2}+A C-B^{2}
$$

- Now take $x=-B / A$. Thus

$$
0 \leq A C-B^{2}, \quad B^{2} \leq A C
$$

as required.

Cauchy-Schwarz

To prove $B^{2} \leq A C$ when $A>0$ where $B=a_{1} b_{1}+\cdots+a_{n} b_{n}$,

$$
A=a_{1}^{2}+\cdots+a_{n}^{2}, \quad C=b_{1}^{2}+\cdots+b_{n}^{2} .
$$

- Let x be in the field, and consider $A x^{2}+2 B x+C$

$$
\begin{aligned}
& =a_{1}^{2} x^{2}+2 a_{1} x b_{1}+b_{1}^{2}+\cdots+a_{n}^{2} x^{2}+2 a_{n} x b_{n}+b_{n}^{2} \\
& =\left(a_{1} x+b_{1}\right)^{2}+\left(a_{2} x+b_{2}\right)^{2}+\cdots+\left(a_{n} x+b_{n}\right)^{2} \\
& \geq 0 .
\end{aligned}
$$

- Now multiply both sides by A. This gives

$$
0 \leq A^{2} x^{2}+2 A B x+A C=(A x+B)^{2}+A C-B^{2}
$$

- Now take $x=-B / A$. Thus

$$
0 \leq A C-B^{2}, \quad B^{2} \leq A C
$$

as required.

- There are many different proofs of this.

Absolute Values

Robert C.
Vaughan

- Before we can discuss anything connected with convergence we need to know what we mean by "small", or to be more precise we need to have some measure of the size of a number. The standard way for real numbers is as follows.

Absolute Values

Robert C.
Vaughan

- Before we can discuss anything connected with convergence we need to know what we mean by "small", or to be more precise we need to have some measure of the size of a number. The standard way for real numbers is as follows.
- Definition 2.5. Absolute Value. Let x be an element of an ordered field. Then we define the absolute value, or modulus, of x by

$$
|x|= \begin{cases}x & \text { when } x \geq 0 \\ -x & \text { when } x<0\end{cases}
$$

- Example 2.8

$$
|-\pi|=\pi,\left|\frac{3}{2}\right|=\frac{3}{2},|0|=0
$$

Absolute Values

Robert C.
Vaughan

$$
|x|= \begin{cases}x & \text { when } x \geq 0 \\ -x & \text { when } x<0\end{cases}
$$

- Note. 1. That $|x|=0$ if and only if $x=0$, but for any $c \neq 0$ there are two choices of x with $|x|=c$, namely $x= \pm c$.

Absolute Values

Robert C.
Vaughan

$$
|x|= \begin{cases}x & \text { when } x \geq 0 \\ -x & \text { when } x<0\end{cases}
$$

- Note. 1. That $|x|=0$ if and only if $x=0$, but for any $c \neq 0$ there are two choices of x with $|x|=c$, namely $x= \pm c$.
- 2. For every x we have $|x| \geq 0$.

Absolute Values

Robert C.
Vaughan

$$
|x|= \begin{cases}x & \text { when } x \geq 0 \\ -x & \text { when } x<0\end{cases}
$$

- Note. 1. That $|x|=0$ if and only if $x=0$, but for any $c \neq 0$ there are two choices of x with $|x|=c$, namely $x= \pm c$.
- 2. For every x we have $|x| \geq 0$.
- 3. For every x we have $|-x|=|x|$. To see this, separate out the three cases $x>0, x=0, x<0$. When $x=0$ we have $|-x|=|0|=0=|0|=|x|$. When $x>0$ we have $-x<0$ and so $|-x|=-(-x)=x=|x|$ and when $x<0$ we have $-x>0$ so that $|-x|=-x=|x|$.

Introduction to Analysis

Absolute Values

Robert C.
Vaughan

Ordered Fields

Inequalities
Absolute Values

Theorem 5

For every x we have $-|x| \leq x \leq|x|$.

- Proof. Two cases.

Absolute Values

Robert C. Vaughan

Ordered Fields

Inequalities
Absolute Values

Theorem 5

For every x we have $-|x| \leq x \leq|x|$.

- Proof. Two cases.
- 1. If $x \geq 0$, then

$$
-|x|=-x \leq 0 \leq x=|x| .
$$

Absolute Values

Robert C.
Vaughan

Ordered Fields

Inequalities
Absolute Values

Theorem 5

For every x we have $-|x| \leq x \leq|x|$.

- Proof. Two cases.
- 1. If $x \geq 0$, then

$$
-|x|=-x \leq 0 \leq x=|x| .
$$

- 2. If $x<0$, then

$$
-|x|=(-1)|x|=(-1)(-x)=x<0 \leq|x| .
$$

The very useful feature of the absolute value is that it preserves multiplicative structure.

Theorem 6

Let a, b be elements of an ordered field. Then $|a b|=|a| .|b|$.

The very useful feature of the absolute value is that it preserves multiplicative structure.

Theorem 6

Let a, b be elements of an ordered field. Then $|a b|=|a| .|b|$.

- Proof. This is a division into cases.

The very useful feature of the absolute value is that it preserves multiplicative structure.

Theorem 6

Let a, b be elements of an ordered field. Then $|a b|=|a| .|b|$.

- Proof. This is a division into cases.
- There are two choices of sign for a and likewise for b, so there should be four cases.

The very useful feature of the absolute value is that it preserves multiplicative structure.

Theorem 6

Let a, b be elements of an ordered field. Then $|a b|=|a| .|b|$.

- Proof. This is a division into cases.
- There are two choices of sign for a and likewise for b, so there should be four cases.
- 1. $a \geq 0, b \geq 0$. Then $a b \geq 0$ so $|a b|=a b=a \cdot b=|a| \cdot|b|$.

The very useful feature of the absolute value is that it preserves multiplicative structure.

Theorem 6

Let a, b be elements of an ordered field. Then $|a b|=|a| .|b|$.

- Proof. This is a division into cases.
- There are two choices of sign for a and likewise for b, so there should be four cases.
- 1. $a \geq 0, b \geq 0$. Then $a b \geq 0$ so $|a b|=a b=a \cdot b=|a| \cdot|b|$.
- 2. $a \geq 0, b<0$. Then

$$
|a b|=|-(a b)|=|a(-b)|=|a| \cdot|-b|=|a| \cdot|b|
$$

The very useful feature of the absolute value is that it preserves multiplicative structure.

Theorem 6

Let a, b be elements of an ordered field. Then $|a b|=|a| .|b|$.

- Proof. This is a division into cases.
- There are two choices of sign for a and likewise for b, so there should be four cases.
- 1. $a \geq 0, b \geq 0$. Then $a b \geq 0$ so $|a b|=a b=a \cdot b=|a| .|b|$.
- 2. $a \geq 0, b<0$. Then

$$
|a b|=|-(a b)|=|a(-b)|=|a| \cdot|-b|=|a| \cdot|b|
$$

- 3. $a<0, b \geq 0$. Imitate 2. with a and b switched.

The very useful feature of the absolute value is that it preserves multiplicative structure.

Theorem 6

Let a, b be elements of an ordered field. Then $|a b|=|a| .|b|$.

- Proof. This is a division into cases.
- There are two choices of sign for a and likewise for b, so there should be four cases.
- 1. $a \geq 0, b \geq 0$. Then $a b \geq 0$ so $|a b|=a b=a \cdot b=|a| \cdot|b|$.
- 2. $a \geq 0, b<0$. Then

$$
|a b|=|-(a b)|=|a(-b)|=|a| \cdot|-b|=|a| \cdot|b|
$$

- 3. $a<0, b \geq 0$. Imitate 2. with a and b switched.
- 4. $a<0, b<0$. Then $a b>0$ and

$$
|a b|=a b=(-a)(-b)=|a| \cdot|b|
$$

Introduction to Analysis

Robert C. Vaughan

Ordered Fields
Inequalities
Absolute Values

The
Continuum Property

Corollary 7

Suppose that $b \neq 0$. Then

$$
\left|\frac{a}{b}\right|=\frac{|a|}{|b|}
$$

Robert C. Vaughan

Corollary 7

Suppose that $b \neq 0$. Then

$$
\left|\frac{a}{b}\right|=\frac{|a|}{|b|}
$$

- Proof. We have

$$
\left|\frac{a}{b}\right||b|=\left|\frac{a}{b} b\right|=|a| .
$$

Corollary 7

Suppose that $b \neq 0$. Then

$$
\left|\frac{a}{b}\right|=\frac{|a|}{|b|}
$$

- Proof. We have

$$
\left|\frac{a}{b}\right||b|=\left|\frac{a}{b} b\right|=|a|
$$

- Since $b \neq 0$ we have $|b| \neq 0$ and so we can divide both sides by $|b|$.

Now we come to something we will use all the time.

Theorem 8 (The Triangle Inequality)

Suppose that x, y are elements of an ordered field. Then

$$
|x+y| \leq|x|+|y|
$$

Now we come to something we will use all the time.

Theorem 8 (The Triangle Inequality)

Suppose that x, y are elements of an ordered field. Then

$$
|x+y| \leq|x|+|y|
$$

- Proof. We argue by contradiction. Suppose there are x and y so that $|x|+|y|<|x+y|$. Then

$$
(|x|+|y|)^{2}<|x+y|^{2}
$$

Now we come to something we will use all the time.

Theorem 8 (The Triangle Inequality)

Suppose that x, y are elements of an ordered field. Then

$$
|x+y| \leq|x|+|y|
$$

- Proof. We argue by contradiction. Suppose there are x and y so that $|x|+|y|<|x+y|$. Then

$$
(|x|+|y|)^{2}<|x+y|^{2}
$$

- But by the definition of absolute value we have

$$
\begin{aligned}
|x+y|^{2} & =(x+y)^{2}=x^{2}+2 x y+y^{2} \\
& \leq x^{2}+|2 x y|+y^{2}=|x|^{2}+2|x||y|+|y|^{2} \\
& =(|x|+|y|)^{2} .
\end{aligned}
$$

Introduction to Analysis

Robert C.
Vaughan

Ordered Fields

Inequalities
Absolute Values

The

Continuum Property

- Example 2.9.

$$
|1-2|=|-1|=1 \leq 3=|1|+|2| .
$$

Theorem 9 (Generalised Triangle Inequality)
Suppose that t and u are elements of an ordered field. Then

$$
||t|-|u|| \leq|t-u| .
$$

Theorem 9 (Generalised Triangle Inequality)
Suppose that t and u are elements of an ordered field. Then

$$
||t|-|u|| \leq|t-u|
$$

- Proof. By the triangle inequality

$$
|t|=|t-u+u| \leq|t-u|+|u| .
$$

Theorem 9 (Generalised Triangle Inequality)
Suppose that t and u are elements of an ordered field. Then

$$
||t|-|u|| \leq|t-u|
$$

- Proof. By the triangle inequality

$$
|t|=|t-u+u| \leq|t-u|+|u| .
$$

- Hence $|t|-|u| \leq|t-u|$.
- Example 2.9.

$$
|1-2|=|-1|=1 \leq 3=|1|+|2| .
$$

- The triangle inequality has important generalisations.

Theorem 9 (Generalised Triangle Inequality)
Suppose that t and u are elements of an ordered field. Then

$$
||t|-|u|| \leq|t-u|
$$

- Proof. By the triangle inequality

$$
|t|=|t-u+u| \leq|t-u|+|u| .
$$

- Hence $|t|-|u| \leq|t-u|$.
- Interchanging t and u gives $|u|-|t| \leq|u-t|=|t-u|$.
- Example 2.9.

$$
|1-2|=|-1|=1 \leq 3=|1|+|2| .
$$

- The triangle inequality has important generalisations.

Theorem 9 (Generalised Triangle Inequality)

Suppose that t and u are elements of an ordered field. Then

$$
||t|-|u|| \leq|t-u| .
$$

- Proof. By the triangle inequality

$$
|t|=|t-u+u| \leq|t-u|+|u| .
$$

- Hence $|t|-|u| \leq|t-u|$.
- Interchanging t and u gives $|u|-|t| \leq|u-t|=|t-u|$.
- But one of $|t|-|u|$ and $|u|-|t|=-(|t|-|u|)$ is non-negative, so is

Introduction to Analysis
 Robert C.
 - Example 2.10. Determine the set \mathcal{A} of x such that $|2 x+3|<7$

 VaughanRobert C. Vaughan

- Example 2.10. Determine the set \mathcal{A} of x such that $|2 x+3|<7$
- Proof. The simple way is to use the definition of absolute value. There are two cases.
- Example 2.10. Determine the set \mathcal{A} of x such that $|2 x+3|<7$
- Proof. The simple way is to use the definition of absolute value. There are two cases.
- 1. $2 x+3 \geq 0$. Then we also have $2 x+3=|2 x+3|<7$. Combining the two we need $-3 / 2 \leq x<(7-3) / 2=2$.
- Example 2.10. Determine the set \mathcal{A} of x such that $|2 x+3|<7$
- Proof. The simple way is to use the definition of absolute value. There are two cases.
- 1. $2 x+3 \geq 0$. Then we also have $2 x+3=|2 x+3|<7$. Combining the two we need $-3 / 2 \leq x<(7-3) / 2=2$.
- Thus in this case the inequality only holds when

$$
-\frac{3}{2} \leq x<2
$$

- Example 2.10. Determine the set \mathcal{A} of x such that $|2 x+3|<7$
- Proof. The simple way is to use the definition of absolute value. There are two cases.
- 1. $2 x+3 \geq 0$. Then we also have $2 x+3=|2 x+3|<7$. Combining the two we need $-3 / 2 \leq x<(7-3) / 2=2$.
- Thus in this case the inequality only holds when

$$
-\frac{3}{2} \leq x<2
$$

- 2. $2 x+3<0$. Now we have $-2 x-3=|2 x+3|<7$ so that $(-7-3) / 2<x<-3 / 2$. Thus in the second case the inequality only holds when

$$
-5<x<-3 / 2
$$

- Example 2.10. Determine the set \mathcal{A} of x such that $|2 x+3|<7$
- Proof. The simple way is to use the definition of absolute value. There are two cases.
- 1. $2 x+3 \geq 0$. Then we also have $2 x+3=|2 x+3|<7$. Combining the two we need $-3 / 2 \leq x<(7-3) / 2=2$.
- Thus in this case the inequality only holds when

$$
-\frac{3}{2} \leq x<2
$$

- 2. $2 x+3<0$. Now we have $-2 x-3=|2 x+3|<7$ so that $(-7-3) / 2<x<-3 / 2$. Thus in the second case the inequality only holds when

$$
-5<x<-3 / 2
$$

- Combining the two cases we see that the inequality holds if and only if $-5<x<2$, so

$$
\mathcal{A}=(-5,2)
$$

Introduction to Analysis
Robert C.
Vaughan
Inequalities
Absolute Values

- Example 2.11. Find all x such that $|x+3|+|x-1|=6$.
- Example 2.11. Find all x such that $|x+3|+|x-1|=6$.
- Proof The simple way is to look at the four possible cases for the absolute values.

Ordered Fields

Inequalities
Absolute Values

- Example 2.11. Find all x such that $|x+3|+|x-1|=6$.
- Proof The simple way is to look at the four possible cases for the absolute values.
- 1. $x+3 \geq 0$ and $x-1 \geq 0$. Then $x \geq-3$ and $x \geq 1$ so $x \geq 1$. Then the equation is

$$
2 x+2=x+3+x-1=6, x=2
$$

- Example 2.11. Find all x such that $|x+3|+|x-1|=6$.
- Proof The simple way is to look at the four possible cases for the absolute values.
- 1. $x+3 \geq 0$ and $x-1 \geq 0$. Then $x \geq-3$ and $x \geq 1$ so $x \geq 1$. Then the equation is

$$
2 x+2=x+3+x-1=6, x=2
$$

- 2. $x+3 \geq 0$ and $x-1<0$. Then $x \geq-3$ and $x<1$ so $-3 \leq x<1$. Then the equation is

$$
4=x+3-(x-1)=6
$$

which is impossible, so no solutions in this case.

- Example 2.11. Find all x such that $|x+3|+|x-1|=6$.
- Proof The simple way is to look at the four possible cases for the absolute values.
- 1. $x+3 \geq 0$ and $x-1 \geq 0$. Then $x \geq-3$ and $x \geq 1$ so $x \geq 1$. Then the equation is

$$
2 x+2=x+3+x-1=6, x=2
$$

- 2. $x+3 \geq 0$ and $x-1<0$. Then $x \geq-3$ and $x<1$ so $-3 \leq x<1$. Then the equation is

$$
4=x+3-(x-1)=6
$$

which is impossible, so no solutions in this case.

- 3. $x+3<0$ and $x-1 \geq 0$. Now $1 \leq x<-3$ which is impossible, so no solutions in this case.
- Example 2.11. Find all x such that $|x+3|+|x-1|=6$.
- Proof The simple way is to look at the four possible cases for the absolute values.
- 1. $x+3 \geq 0$ and $x-1 \geq 0$. Then $x \geq-3$ and $x \geq 1$ so $x \geq 1$. Then the equation is

$$
2 x+2=x+3+x-1=6, x=2
$$

- 2. $x+3 \geq 0$ and $x-1<0$. Then $x \geq-3$ and $x<1$ so $-3 \leq x<1$. Then the equation is

$$
4=x+3-(x-1)=6
$$

which is impossible, so no solutions in this case.

- 3. $x+3<0$ and $x-1 \geq 0$. Now $1 \leq x<-3$ which is impossible, so no solutions in this case.
- 4. $x+3<0$ and $x-1<0$. This requires $x<-3$ and $x<1$, so $x<-3$. Then the equation is
$-2 x-2=-(x+3)-(x-1)=|x+3|+|x-1|=6, x=-4$.
- Example 2.11. Find all x such that $|x+3|+|x-1|=6$.
- Proof The simple way is to look at the four possible cases for the absolute values.
- 1. $x+3 \geq 0$ and $x-1 \geq 0$. Then $x \geq-3$ and $x \geq 1$ so $x \geq 1$. Then the equation is

$$
2 x+2=x+3+x-1=6, x=2
$$

- 2. $x+3 \geq 0$ and $x-1<0$. Then $x \geq-3$ and $x<1$ so $-3 \leq x<1$. Then the equation is

$$
4=x+3-(x-1)=6
$$

which is impossible, so no solutions in this case.

- 3. $x+3<0$ and $x-1 \geq 0$. Now $1 \leq x<-3$ which is impossible, so no solutions in this case.
- 4. $x+3<0$ and $x-1<0$. This requires $x<-3$ and $x<1$, so $x<-3$. Then the equation is
$-2 x-2=-(x+3)-(x-1)=|x+3|+|x-1|=6, x=-4$.
- Hence the complete solution is $x=-4$ or 2 .

We have already seen that it is possible to use ordered pairs to construct the integers from the natural numbers and then the rational numbers from the integers.

- Because we have to somehow build in limiting processes to obtain the real numbers we have to do something more sophisticated.

We have already seen that it is possible to use ordered pairs to construct the integers from the natural numbers and then the rational numbers from the integers.

- Because we have to somehow build in limiting processes to obtain the real numbers we have to do something more sophisticated.
- There are several different ways of doing this.

We have already seen that it is possible to use ordered pairs to construct the integers from the natural numbers and then the rational numbers from the integers.

- Because we have to somehow build in limiting processes to obtain the real numbers we have to do something more sophisticated.
- There are several different ways of doing this.
- The approach we choose is essentially due to Dedekind.

We have already seen that it is possible to use ordered pairs to construct the integers from the natural numbers and then the rational numbers from the integers.

- Because we have to somehow build in limiting processes to obtain the real numbers we have to do something more sophisticated.
- There are several different ways of doing this.
- The approach we choose is essentially due to Dedekind.
- In place of ordered pairs we should, at least initially think of real numbers as being infinite sets of rational numbers.

We have already seen that it is possible to use ordered pairs to construct the integers from the natural numbers and then the rational numbers from the integers.

- Because we have to somehow build in limiting processes to obtain the real numbers we have to do something more sophisticated.
- There are several different ways of doing this.
- The approach we choose is essentially due to Dedekind.
- In place of ordered pairs we should, at least initially think of real numbers as being infinite sets of rational numbers.
- Thus we could think of $\sqrt{2}$ as being

$$
" \sqrt{2} "=\left\{a \in \mathbb{Q}: \text { either }\left(a>0 \text { and } a^{2}<2\right) \text { or } a \leq 0\right\}
$$

We have already seen that it is possible to use ordered pairs to construct the integers from the natural numbers and then the rational numbers from the integers.

- Because we have to somehow build in limiting processes to obtain the real numbers we have to do something more sophisticated.
- There are several different ways of doing this.
- The approach we choose is essentially due to Dedekind.
- In place of ordered pairs we should, at least initially think of real numbers as being infinite sets of rational numbers.
- Thus we could think of $\sqrt{2}$ as being

$$
" \sqrt{2} "=\left\{a \in \mathbb{Q}: \text { either }\left(a>0 \text { and } a^{2}<2\right) \text { or } a \leq 0\right\}
$$

- In other words we think of $\sqrt{2}$ as being the set of all rational numbers to the left of where we expect $\sqrt{2}$ to be.

We have already seen that it is possible to use ordered pairs to construct the integers from the natural numbers and then the rational numbers from the integers.

- Because we have to somehow build in limiting processes to obtain the real numbers we have to do something more sophisticated.
- There are several different ways of doing this.
- The approach we choose is essentially due to Dedekind.
- In place of ordered pairs we should, at least initially think of real numbers as being infinite sets of rational numbers.
- Thus we could think of $\sqrt{2}$ as being

$$
" \sqrt{2} "=\left\{a \in \mathbb{Q}: \text { either }\left(a>0 \text { and } a^{2}<2\right) \text { or } a \leq 0\right\}
$$

- In other words we think of $\sqrt{2}$ as being the set of all rational numbers to the left of where we expect $\sqrt{2}$ to be.
- Then we need to show that these new objects we have constructed can be made to satisfy all the previous axioms.

Introduction
 to Analysis
 In order to proceed systematically we need to set up some language.

In order to proceed systematically we need to set up some language.

- Definition 2.6. A set \mathcal{S} of real numbers is bounded above when there exists a real number H such that for every $x \in \mathcal{S}$ we have $x \leq H$.

In order to proceed systematically we need to set up some language.

- Definition 2.6. A set \mathcal{S} of real numbers is bounded above when there exists a real number H such that for every $x \in \mathcal{S}$ we have $x \leq H$.
- Any such number H is called an upper bound for \mathcal{S}.

In order to proceed systematically we need to set up some language.

- Definition 2.6. A set \mathcal{S} of real numbers is bounded above when there exists a real number H such that for every $x \in \mathcal{S}$ we have $x \leq H$.
- Any such number H is called an upper bound for \mathcal{S}.
- Example 2.12. Let $\mathcal{S}=\{-3 / 2, \pi, 19\}$. Then $19,19.1$, $20,100,10^{60}$ are all upper bounds for \mathcal{S}.

In order to proceed systematically we need to set up some language.

- Definition 2.6. A set \mathcal{S} of real numbers is bounded above when there exists a real number H such that for every $x \in \mathcal{S}$ we have $x \leq H$.
- Any such number H is called an upper bound for \mathcal{S}.
- Example 2.12. Let $\mathcal{S}=\{-3 / 2, \pi, 19\}$. Then 19, 19.1, $20,100,10^{60}$ are all upper bounds for \mathcal{S}.
- There is a corresponding definition of bounded below. Definition 2.7. A set \mathcal{S} of real numbers is bounded below when there exists a real number h such that for every $x \in \mathcal{S}$ we have $h \leq x$.

In order to proceed systematically we need to set up some language.

- Definition 2.6. A set \mathcal{S} of real numbers is bounded above when there exists a real number H such that for every $x \in \mathcal{S}$ we have $x \leq H$.
- Any such number H is called an upper bound for \mathcal{S}.
- Example 2.12. Let $\mathcal{S}=\{-3 / 2, \pi, 19\}$. Then 19, 19.1, $20,100,10^{60}$ are all upper bounds for \mathcal{S}.
- There is a corresponding definition of bounded below. Definition 2.7. A set \mathcal{S} of real numbers is bounded below when there exists a real number h such that for every $x \in \mathcal{S}$ we have $h \leq x$.
- Any such number h is called a lower bound for \mathcal{S}.

In order to proceed systematically we need to set up some language.

- Definition 2.6. A set \mathcal{S} of real numbers is bounded above when there exists a real number H such that for every $x \in \mathcal{S}$ we have $x \leq H$.
- Any such number H is called an upper bound for \mathcal{S}.
- Example 2.12. Let $\mathcal{S}=\{-3 / 2, \pi, 19\}$. Then 19, 19.1, $20,100,10^{60}$ are all upper bounds for \mathcal{S}.
- There is a corresponding definition of bounded below. Definition 2.7. A set \mathcal{S} of real numbers is bounded below when there exists a real number h such that for every $x \in \mathcal{S}$ we have $h \leq x$.
- Any such number h is called a lower bound for \mathcal{S}.
- Definition 2.8. A set \mathcal{S} of real numbers which is both bounded above and bounded below is called bounded. If it is not bounded, then it is called unbounded.

In order to proceed systematically we need to set up some language.

- Definition 2.6. A set \mathcal{S} of real numbers is bounded above when there exists a real number H such that for every $x \in \mathcal{S}$ we have $x \leq H$.
- Any such number H is called an upper bound for \mathcal{S}.
- Example 2.12. Let $\mathcal{S}=\{-3 / 2, \pi, 19\}$. Then 19, 19.1, $20,100,10^{60}$ are all upper bounds for \mathcal{S}.
- There is a corresponding definition of bounded below. Definition 2.7. A set \mathcal{S} of real numbers is bounded below when there exists a real number h such that for every $x \in \mathcal{S}$ we have $h \leq x$.
- Any such number h is called a lower bound for \mathcal{S}.
- Definition 2.8. A set \mathcal{S} of real numbers which is both bounded above and bounded below is called bounded. If it is not bounded, then it is called unbounded.
- The set \mathcal{S} of Example 2.12 is bounded below and bounded. The set \mathbb{N} is unbounded (presumably - later we will prove this).
- Example 2.13. 1. $\{\sin x: x \in \mathbb{R}\}$ is bounded because $-1 \leq \sin x \leq 1$ for every x.

2. $\left\{x^{2}: x \in \mathbb{R}\right\}$ is bounded below but unbounded.
3. $\mathcal{A}=\left\{x: x^{2}-3 x+2<0\right\}$ is interesting.

- Example 2.13. 1. $\{\sin x: x \in \mathbb{R}\}$ is bounded because $-1 \leq \sin x \leq 1$ for every x.

2. $\left\{x^{2}: x \in \mathbb{R}\right\}$ is bounded below but unbounded.
3. $\mathcal{A}=\left\{x: x^{2}-3 x+2<0\right\}$ is interesting.

- It is the set of x for which the polynomial $x^{2}-3 x+2=(x-1)(x-2)$ is negative.
- Example 2.13. 1. $\{\sin x: x \in \mathbb{R}\}$ is bounded because $-1 \leq \sin x \leq 1$ for every x.

2. $\left\{x^{2}: x \in \mathbb{R}\right\}$ is bounded below but unbounded.
3. $\mathcal{A}=\left\{x: x^{2}-3 x+2<0\right\}$ is interesting.

- It is the set of x for which the polynomial $x^{2}-3 x+2=(x-1)(x-2)$ is negative.
- The factorisation shows that it is only negative when $1<x<2$.
- Example 2.13. 1. $\{\sin x: x \in \mathbb{R}\}$ is bounded because $-1 \leq \sin x \leq 1$ for every x.

2. $\left\{x^{2}: x \in \mathbb{R}\right\}$ is bounded below but unbounded. 3. $\mathcal{A}=\left\{x: x^{2}-3 x+2<0\right\}$ is interesting.

- It is the set of x for which the polynomial $x^{2}-3 x+2=(x-1)(x-2)$ is negative.
- The factorisation shows that it is only negative when $1<x<2$.
- Hence the set \mathcal{A} is bounded with 1 as a lower bound and 2 as an upper bound..

We have already suggested above that real numbers like $\sqrt{2}$ can be constructed through the use of a set which in some sense is the set of all rational numbers to the left of $\sqrt{2}$.

- Here is another example.

Example 2.14. Can we assign a meaning to

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ?
$$

We have already suggested above that real numbers like $\sqrt{2}$ can be constructed through the use of a set which in some sense is the set of all rational numbers to the left of $\sqrt{2}$.

- Here is another example.

Example 2.14. Can we assign a meaning to

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ?
$$

- Look at the sum S_{n} after n terms, so that

$$
\begin{aligned}
& S_{1}=1, \quad S_{2}=1+\frac{1}{2^{2}} \\
& \quad \vdots \\
& S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}}
\end{aligned}
$$

We have already suggested above that real numbers like $\sqrt{2}$ can be constructed through the use of a set which in some sense is the set of all rational numbers to the left of $\sqrt{2}$.

- Here is another example.

Example 2.14. Can we assign a meaning to

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ?
$$

- Look at the sum S_{n} after n terms, so that

$$
\begin{aligned}
& S_{1}=1, \quad S_{2}=1+\frac{1}{2^{2}} \\
& \quad \vdots \\
& S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}}
\end{aligned}
$$

- Obviously

$$
S_{1}<S_{2}<S_{3}<\ldots<S_{n}<\ldots
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Introduction } \\
\text { to Analysis }
\end{array} \\
& \begin{array}{l}
\text { Robert C. } \\
\text { Vaughan }
\end{array} \\
& \text { Ordered Fields } \\
& \text { Inequalities }
\end{aligned} \quad S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ?,
$$

Absolute Values

The
Continuum Property

$$
\begin{gathered}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ? \\
S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}}
\end{gathered}
$$

- Let

$$
\mathcal{A}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{n}, \ldots\right\}
$$

- Suppose that \mathcal{A} is bounded above, so there are real numbers y such that $S_{n} \leq y$ for every n.

$$
\begin{gathered}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ? \\
S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}}
\end{gathered}
$$

- Let

$$
\mathcal{A}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{n}, \ldots\right\}
$$

- Suppose that \mathcal{A} is bounded above, so there are real numbers y such that $S_{n} \leq y$ for every n.
- Let x be the smallest such number.

$$
\begin{gathered}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ? \\
S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}}
\end{gathered}
$$

- Let

$$
\mathcal{A}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{n}, \ldots\right\}
$$

- Suppose that \mathcal{A} is bounded above, so there are real numbers y such that $S_{n} \leq y$ for every n.
- Let x be the smallest such number.
- Then surely this means that the series is converging to x ?

$$
\begin{gathered}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ? \\
S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}}
\end{gathered}
$$

- Let

$$
\mathcal{A}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{n}, \ldots\right\}
$$

- Suppose that \mathcal{A} is bounded above, so there are real numbers y such that $S_{n} \leq y$ for every n.
- Let x be the smallest such number.
- Then surely this means that the series is converging to x ?
- Oh, but perhaps there is no smallest such number! Well surely there should be.

$$
\begin{gathered}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ? \\
S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}}
\end{gathered}
$$

- Let

$$
\mathcal{A}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{n}, \ldots\right\}
$$

- Suppose that \mathcal{A} is bounded above, so there are real numbers y such that $S_{n} \leq y$ for every n.
- Let x be the smallest such number.
- Then surely this means that the series is converging to x ?
- Oh, but perhaps there is no smallest such number! Well surely there should be.
- The job of the axiom we are missing is to ensure that there is always a smallest such number.

$$
\begin{aligned}
& \begin{array}{l}
\text { Introduction } \\
\text { to Analysis }
\end{array} \\
& \begin{array}{l}
\text { Robert C. } \\
\text { Vaughan }
\end{array} \\
& \text { Ordered Fields }
\end{aligned} \quad 1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ?,
$$

Inequalities
Absolute Values

The
Continuum Property

$$
\begin{gathered}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ? \\
S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}} .
\end{gathered}
$$

- By the way,

$$
\begin{aligned}
S_{n} & \leq 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{(n-1) n} \\
& =1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& =2-\frac{1}{n}<2,
\end{aligned}
$$

$$
\begin{gathered}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ? \\
S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}} .
\end{gathered}
$$

- By the way,

$$
\begin{aligned}
S_{n} & \leq 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{(n-1) n} \\
& =1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& =2-\frac{1}{n}<2,
\end{aligned}
$$

- so the set \mathcal{A} is bounded above by 2 .

$$
\begin{gathered}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots ? \\
S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}} .
\end{gathered}
$$

- By the way,

$$
\begin{aligned}
S_{n} & \leq 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{(n-1) n} \\
& =1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& =2-\frac{1}{n}<2,
\end{aligned}
$$

- so the set \mathcal{A} is bounded above by 2 .
- Actually the series is well known and converges to

$$
\frac{\pi^{2}}{6}
$$

Robert C.
Vaughan
Ordered Fields
Inequalities
Absolute Values

The Continuum Property

The Continuum Property

Thus we can now state the axiom which distinguishes the real numbers from the rational numbers.

The Continuum Property

Robert C.
Vaughan

Thus we can now state the axiom which distinguishes the real numbers from the rational numbers.

- Definition 2.9. The Continuum Property. Every non-empty subset \mathcal{S} of \mathbb{R} which is bounded above has a least upper bound, also called a supremum, and we denote it by $\sup \mathcal{S}$.

The Continuum Property

Robert C.
Vaughan

Thus we can now state the axiom which distinguishes the real numbers from the rational numbers.

- Definition 2.9. The Continuum Property. Every non-empty subset \mathcal{S} of \mathbb{R} which is bounded above has a least upper bound, also called a supremum, and we denote it by $\sup \mathcal{S}$.
- Example 2.15. Here are some examples

The Continuum Property

Robert C.
Vaughan

Thus we can now state the axiom which distinguishes the real numbers from the rational numbers.

- Definition 2.9. The Continuum Property. Every non-empty subset \mathcal{S} of \mathbb{R} which is bounded above has a least upper bound, also called a supremum, and we denote it by $\sup \mathcal{S}$.
- Example 2.15. Here are some examples
- 1. $\sup \{1,2,3\}=3$.

The Continuum Property

Robert C.
Vaughan

Thus we can now state the axiom which distinguishes the real numbers from the rational numbers.

- Definition 2.9. The Continuum Property. Every non-empty subset \mathcal{S} of \mathbb{R} which is bounded above has a least upper bound, also called a supremum, and we denote it by $\sup \mathcal{S}$.
- Example 2.15. Here are some examples
- 1. $\sup \{1,2,3\}=3$.
- 2. $\sup (1,2)=2$.

The Continuum Property

Robert C.
Vaughan

Thus we can now state the axiom which distinguishes the real numbers from the rational numbers.

- Definition 2.9. The Continuum Property. Every non-empty subset \mathcal{S} of \mathbb{R} which is bounded above has a least upper bound, also called a supremum, and we denote it by $\sup \mathcal{S}$.
- Example 2.15. Here are some examples
- 1. $\sup \{1,2,3\}=3$.
- 2. $\sup (1,2)=2$.
- 3. $\sup (0, \infty)$ does not exist.

The Continuum Property

Robert C.
Vaughan

Thus we can now state the axiom which distinguishes the real numbers from the rational numbers.

- Definition 2.9. The Continuum Property. Every non-empty subset \mathcal{S} of \mathbb{R} which is bounded above has a least upper bound, also called a supremum, and we denote it by $\sup \mathcal{S}$.
- Example 2.15. Here are some examples
- 1. $\sup \{1,2,3\}=3$.
- 2. $\sup (1,2)=2$.
- 3. $\sup (0, \infty)$ does not exist.
- 4. $\sup \left\{\frac{1}{2}, \frac{3}{4}, \ldots, 1-\frac{1}{2^{n}}, \ldots\right\}=1$.

The Continuum Property

Robert C.
Vaughan

Thus we can now state the axiom which distinguishes the real numbers from the rational numbers.

- Definition 2.9. The Continuum Property. Every non-empty subset \mathcal{S} of \mathbb{R} which is bounded above has a least upper bound, also called a supremum, and we denote it by $\sup \mathcal{S}$.
- Example 2.15. Here are some examples
- 1. $\sup \{1,2,3\}=3$.
- 2. $\sup (1,2)=2$.
- 3. $\sup (0, \infty)$ does not exist.
- 4. $\sup \left\{\frac{1}{2}, \frac{3}{4}, \ldots, 1-\frac{1}{2^{n}}, \ldots\right\}=1$.
- Example 2.16. Suppose that \mathcal{A} is s non-empty set of real numbers which is bounded above. Then $\sup \mathcal{A}$ is unique.

The Continuum Property

Robert C.
Vaughan

Thus we can now state the axiom which distinguishes the real numbers from the rational numbers.

- Definition 2.9. The Continuum Property. Every non-empty subset \mathcal{S} of \mathbb{R} which is bounded above has a least upper bound, also called a supremum, and we denote it by $\sup \mathcal{S}$.
- Example 2.15. Here are some examples
- 1. $\sup \{1,2,3\}=3$.
- 2. $\sup (1,2)=2$.
- 3. $\sup (0, \infty)$ does not exist.
- 4. $\sup \left\{\frac{1}{2}, \frac{3}{4}, \ldots, 1-\frac{1}{2^{n}}, \ldots\right\}=1$.
- Example 2.16. Suppose that \mathcal{A} is s non-empty set of real numbers which is bounded above. Then sup \mathcal{A} is unique.
- Proof. Suppose that $s_{1}<s_{2}$ are two different suprema of \mathcal{A}. By the definition of supremum we have $a \leq s_{1}$ for every $a \in \mathcal{A}$ and so s_{2} could not be a least upper bound.

It is useful to deal with sets which are bounded below.

- The corresponding term is infimum.

Theorem 10

Suppose that \mathcal{B} is a non-empty set of real numbers which is bounded below. Then \mathcal{B} has a greatest lower bound.

It is useful to deal with sets which are bounded below.

- The corresponding term is infimum.

Theorem 10

Suppose that \mathcal{B} is a non-empty set of real numbers which is bounded below. Then \mathcal{B} has a greatest lower bound.

- Proof. Let $\mathcal{A}=\{-b: b \in \mathcal{B}\}$ and h be a lower bound for \mathcal{B}, so $h \leq b$ for every $b \in \mathcal{B}$.

It is useful to deal with sets which are bounded below.

- The corresponding term is infimum.

Theorem 10

Suppose that \mathcal{B} is a non-empty set of real numbers which is bounded below. Then \mathcal{B} has a greatest lower bound.

- Proof. Let $\mathcal{A}=\{-b: b \in \mathcal{B}\}$ and h be a lower bound for \mathcal{B}, so $h \leq b$ for every $b \in \mathcal{B}$.
- Then by Theorem $1,-b=(-1) b \leq(-1) h=-h$ for every $b \in \mathcal{B}$.

It is useful to deal with sets which are bounded below.

- The corresponding term is infimum.

Theorem 10

Suppose that \mathcal{B} is a non-empty set of real numbers which is bounded below. Then \mathcal{B} has a greatest lower bound.

- Proof. Let $\mathcal{A}=\{-b: b \in \mathcal{B}\}$ and h be a lower bound for \mathcal{B}, so $h \leq b$ for every $b \in \mathcal{B}$.
- Then by Theorem $1,-b=(-1) b \leq(-1) h=-h$ for every $b \in \mathcal{B}$.
- Hence $-h$ ia an upper bound for \mathcal{A}

It is useful to deal with sets which are bounded below.

- The corresponding term is infimum.

Theorem 10

Suppose that \mathcal{B} is a non-empty set of real numbers which is bounded below. Then \mathcal{B} has a greatest lower bound.

- Proof. Let $\mathcal{A}=\{-b: b \in \mathcal{B}\}$ and h be a lower bound for \mathcal{B}, so $h \leq b$ for every $b \in \mathcal{B}$.
- Then by Theorem $1,-b=(-1) b \leq(-1) h=-h$ for every $b \in \mathcal{B}$.
- Hence $-h$ ia an upper bound for \mathcal{A}
- Thus it has a supremum, $s, s \geq-b$ for every $b \in \mathcal{B}$ and $-s \leq b$ for every b in \mathcal{B}.

It is useful to deal with sets which are bounded below.

- The corresponding term is infimum.

Theorem 10

Suppose that \mathcal{B} is a non-empty set of real numbers which is bounded below. Then \mathcal{B} has a greatest lower bound.

- Proof. Let $\mathcal{A}=\{-b: b \in \mathcal{B}\}$ and h be a lower bound for \mathcal{B}, so $h \leq b$ for every $b \in \mathcal{B}$.
- Then by Theorem $1,-b=(-1) b \leq(-1) h=-h$ for every $b \in \mathcal{B}$.
- Hence - h ia an upper bound for \mathcal{A}
- Thus it has a supremum, $s, s \geq-b$ for every $b \in \mathcal{B}$ and $-s \leq b$ for every b in \mathcal{B}.
- We show that there can be no larger lower bound.

It is useful to deal with sets which are bounded below.

- The corresponding term is infimum.

Theorem 10

Suppose that \mathcal{B} is a non-empty set of real numbers which is bounded below. Then \mathcal{B} has a greatest lower bound.

- Proof. Let $\mathcal{A}=\{-b: b \in \mathcal{B}\}$ and h be a lower bound for \mathcal{B}, so $h \leq b$ for every $b \in \mathcal{B}$.
- Then by Theorem $1,-b=(-1) b \leq(-1) h=-h$ for every $b \in \mathcal{B}$.
- Hence $-h$ ia an upper bound for \mathcal{A}
- Thus it has a supremum, $s, s \geq-b$ for every $b \in \mathcal{B}$ and $-s \leq b$ for every b in \mathcal{B}.
- We show that there can be no larger lower bound.
- Suppose on the contrary that there is a $t>-s$ such that t is a lower bound for \mathcal{B}. i.e. for every $b \in \mathcal{B}$. Then $-b \leq-t<s$. Thus $-t$ would be a lower upper bound for \mathcal{A} than its supremum s which is absurd.
- Before moving on to study the properties of the real numbers we just give an inkling of how it is possible to pull over to \mathbb{R} the various axioms which are satisfied by \mathbb{Q}

Theorem 11

Suppose that \mathcal{A} is a non-empty set of real numbers which is bounded above, $y>0$ and $\mathcal{B}=\{y a: a \in \mathcal{A}\}$. Then $\sup \mathcal{B}$ exists and $\sup \mathcal{B}=y \sup \mathcal{A}$.

- Before moving on to study the properties of the real numbers we just give an inkling of how it is possible to pull over to \mathbb{R} the various axioms which are satisfied by \mathbb{Q}

Theorem 11

Suppose that \mathcal{A} is a non-empty set of real numbers which is bounded above, $y>0$ and $\mathcal{B}=\{y a: a \in \mathcal{A}\}$. Then $\sup \mathcal{B}$ exists and $\sup \mathcal{B}=y \sup \mathcal{A}$.

- Proof. Since \mathcal{A} is non-empty, so is \mathcal{B}.
- Before moving on to study the properties of the real numbers we just give an inkling of how it is possible to pull over to \mathbb{R} the various axioms which are satisfied by \mathbb{Q}

Theorem 11

Suppose that \mathcal{A} is a non-empty set of real numbers which is bounded above, $y>0$ and $\mathcal{B}=\{y a: a \in \mathcal{A}\}$. Then $\sup \mathcal{B}$ exists and $\sup \mathcal{B}=y \sup \mathcal{A}$.

- Proof. Since \mathcal{A} is non-empty, so is \mathcal{B}.
- Moreover if H is an upper bound for \mathcal{A}, then $y H$ is an upper bound for \mathcal{B}.
- Before moving on to study the properties of the real numbers we just give an inkling of how it is possible to pull over to \mathbb{R} the various axioms which are satisfied by \mathbb{Q}

Theorem 11

Suppose that \mathcal{A} is a non-empty set of real numbers which is bounded above, $y>0$ and $\mathcal{B}=\{y a: a \in \mathcal{A}\}$. Then $\sup \mathcal{B}$ exists and $\sup \mathcal{B}=y \sup \mathcal{A}$.

- Proof. Since \mathcal{A} is non-empty, so is \mathcal{B}.
- Moreover if H is an upper bound for \mathcal{A}, then $y H$ is an upper bound for \mathcal{B}.
- Hence $s=\sup \mathcal{A}$ and $t=\sup \mathcal{B}$ both exist.
- Before moving on to study the properties of the real numbers we just give an inkling of how it is possible to pull over to \mathbb{R} the various axioms which are satisfied by \mathbb{Q}

Theorem 11

Suppose that \mathcal{A} is a non-empty set of real numbers which is bounded above, $y>0$ and $\mathcal{B}=\{y a: a \in \mathcal{A}\}$. Then $\sup \mathcal{B}$ exists and $\sup \mathcal{B}=y \sup \mathcal{A}$.

- Proof. Since \mathcal{A} is non-empty, so is \mathcal{B}.
- Moreover if H is an upper bound for \mathcal{A}, then $y H$ is an upper bound for \mathcal{B}.
- Hence $s=\sup \mathcal{A}$ and $t=\sup \mathcal{B}$ both exist.
- Moreover sy will be an upper bound for \mathcal{B} and t / y will be an upper bound for \mathcal{A}.
- Before moving on to study the properties of the real numbers we just give an inkling of how it is possible to pull over to \mathbb{R} the various axioms which are satisfied by \mathbb{Q}

Theorem 11

Suppose that \mathcal{A} is a non-empty set of real numbers which is bounded above, $y>0$ and $\mathcal{B}=\{y a: a \in \mathcal{A}\}$. Then $\sup \mathcal{B}$ exists and $\sup \mathcal{B}=y \sup \mathcal{A}$.

- Proof. Since \mathcal{A} is non-empty, so is \mathcal{B}.
- Moreover if H is an upper bound for \mathcal{A}, then $y H$ is an upper bound for \mathcal{B}.
- Hence $s=\sup \mathcal{A}$ and $t=\sup \mathcal{B}$ both exist.
- Moreover sy will be an upper bound for \mathcal{B} and t / y will be an upper bound for \mathcal{A}.
- Hence $t \leq s y$ and $s \leq t / y \leq s$, whence $t=y s$.

