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• The great power of modern mathematics lies in the
axiomatic approach.

• The original model for this is Euclid’s axiomatisation of
geometry about 300BC.

• That is the establishment of a few simple basic statements
(axioms) from which all propositions are deduced by basic
rules of logical deduction.

• The wisdom of Euclids original choice is demonstrated by
the observation that in the intervening 2300 years nobody
has found anything self contradictory in the vast panoply
of geometric theorems which have been established in
Euclidean geometry.
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• However, Euclidean geometry has its limitations.

• In the 19th century it was observed that there are different
geometries which lie outside Euclidean geometry.

• Nevertheless they can be described by adjusting the axiom
which deals with the concept of parallel lines.
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• One of the great deficiencies of the ancient world was a
good way of describing numbers.

• They had some understanding of positive whole numbers,
but, at least in Europe, the systems for describing them
derived from the Etruscans was similar to, and eventually
evolved into, the Roman numeral system.

• We know how clumsy that is for doing arithemtic, and it is
no surprise to learn that there was no simple way of deal
even with quite simple fractions.
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• Euclid in his elements needs to understand the “length” of
a given line segment.

• Whilst there was language in commerce for the use of
simple fractions, normally with denominator 12 (the
duodecimal system), for a general fraction he had to resort
to the idea of ”proportion”.

• In other words given a particular unit length he
understands how to produce line segments whose length is
twice, thrice, and so on, the unit length.

• He also understands how to product a line segment whose
length ℓ satisfies

ℓ : 1 :: m : n

where m and n are positive whole numbers, and which in
modern notation is simply

ℓ =
ℓ

1
=

m

n
.
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• All very well and good, but it had already been discovered
by the Pythagorean school that not all lengths could be
described in this way.

• For example, there was no rational length whose square
was 2.

• Yet they could construct such lengths from right angled
triangles.
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Theorem 1

There is no rational number whose square is 2, i.e.
√
2 = m

n
with m and n whole numbers is impossible.

• Proof. We argue by contradiction. We can suppose that
m and n are positive, and we can remove common factors
so that m and n have no common prime factors.

• Moreover we have 2n2 = m2.

• The prime number 2 is a factor of the left hand side, so it
must also be a factor of m2, and hence of m.

• Write q = m/2, so that q is also a positive whole number
and

2n2 = 22q2, n2 = 2q2.

• Now repeating the argument we have that 2 is also a
factor of n.

• That is we just showed that m and n do have a common
prime factor contradicting our basic assumption.
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imply that
√
2 does not exist, and gave a paradox against

Pythagoras’ theorem. Our problem is to resolve this.
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• Of course we are all familiar with the fact that we can get
good approximations to

√
2

(1.4)2 = 1.96 (1.5)2 = 2.25

(1.41)2 = 1.9881 (1.42)2 = 2.0164

(1.414)2 = 1.999396 (1.415)2 = 2.002225

(1.4142)2 = 1.99996164 (1.4143)2 = 2.0002449

• Well it looks as though we should consider
√
2 as the

result of some kind of limiting process.

• What this suggests, at least philosophically, is that
perhaps we should think of

√
2 as being an infinite

collection of rational numbers.
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Sets

• Here is the dictionary definition of a set.
Definition 1.1. A set is a collection of objects called
elements.

• Like most dictionary definitions it does not help very much
without further insight.

• If one is not careful it can lead to further paradoxes and
difficulties.

• In order to avoid this we will be concerned solely with sets
of numbers or mathematical objects which are defined in a
similar way, such as ordered k-tuples of numbers.

• When x is an element of the set S we write

x ∈ S

• The symbol ∈ is a variant of the Greek epsilon, ϵ or ε but
should not be confused with them and one should try to
distinguish them when writing them.
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Sets

• Sets can be defined in various ways.

• 1. By listing the elements.

S = {1, 3, π, 7/2,
√
17},

N = {1, 2, 3, 4, 5, 6, . . .} The natural numbers,

Z = {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . .} The integers,

Q =

{
p

q
: p ∈ Z, q ∈ N

}
The rational numbers.

• 2. By some kind of defining formula.

T = {x : 1 < x < 2}, (2.1)

U = {(x , y) : x2 + y2 = 1}. (2.2)
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Sets

There is another way of defining sets.

• 3. By combining known sets. We will look at this in more
detail later.

• There is one very special set, the empty set, usually
denoted by

∅

which is the set which has NO elements.

• The empty set will play an important rôle in our
deliberations.

• Example 1.1.
{x : x2 < 0} = ∅.

• There is an important logical observation. Since the set
has no elements its elements can have any property. For
example they can be both positive and negative!
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• An important concept is that of a subset.

• Definition 1.2. We say that S is a subset of T when
every element of S is also an element of T , and we write

S ⊂ T .

• In this course we will include the possibility that S = T .
• Increasingly it is common to use ⊆ in place of ⊂ and to
use the latter to mean that S is a subset with S ≠ T , i.e.
S is a proper subset of T .

• Note that the empty set ∅ is a subset of every set!
• Example 1.2. The set T = {1, 3, π} has subsets

{1,3, π},
{1, 3}, {1,π}, {3, π},

{1}, {3}, {π},
∅
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• Generally a finite set with k elements has 2k subsets and(
k

j

)
subsets with exactly j elements.
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• As promised above we now look at various ways of
combining sets.

• There are three ways commonly used to do this.

• Definition 1.3. The union of two sets A and B is the set
which contains all the elements of A and B

A ∪ B = {x : x ∈ A or x ∈ B}.

• Note the use of the logical “or”, not to be confused with
“xor”, i.e it includes x which are in both sets.

• Example 1.3. A = {1, 2, 3}, B = {2, 3, 4}

A ∪ B = {1, 2, 3, 4}.
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• Definition 1.4. The intersection of two sets A and B is
the set which contains the elements which are in both A
and B.

A ∩ B = {x : x ∈ A and x ∈ B}.

• Example 1.4. In the above example
A = {1, 2, 3}, B = {2, 3, 4},

A ∩ B = {2, 3}.

• Another Example 1.5.

U = {x : 0 < x < 1}, V = {1 ≤ x ≤ 2}, U ∩ V = ∅.
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• Definition 1.5. The complement of B with respect to A
is the set of x in A which are not in B,

A \ B = {x : x ∈ A and x /∈ B}.

• Example 1.6. Again in the example
A = {1, 2, 3}, B = {2, 3, 4},

A \ B = {1}, B \ A = {4}.
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• These relationships form quite a complex algebra.

• Example 1.7. In general

(C \ D) ∩ (D \ C) = ∅.

and
C ∩ (D ∪ E) = (C ∩ D) ∪ (C ∩ E).
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• We now come to the need for proofs, since some of these
relationships are not completely obvious.

• The recommended way of proving such relationships is by
truth tables. Note: Venn diagrams can NOT be used for
proofs.

• For each object x there are two possibilities for each set, x
is in it, or x is not in it. To indicate which I will use a 0 or
1 respectively (think of it as the “characteristic or indicator
function”. Some people use F and T corresponding to it
being false or true that the element is in the set.

• Returning to the penultimate example.

C D C \ D D \ C (C \ D) ∩ (D \ C) ∅
1 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 0 0
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Here is the other Example.

C ∩ (D ∪ E) = (C ∩ D) ∪ (C ∩ E).

C D E D ∪ E C ∩ D C ∩ E LHS RHS
1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 1
0 1 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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Integers and Rationals

• We have already introduced the standard notation

N = {1, 2, 3, 4, 5, 6, . . .} The natural numbers,

Z = {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . .} The integers,

Q =

{
p

q
: p ∈ Z, q ∈ N

}
The rational numbers.

• Our main interest is the set or real numbers R, and since
we expect that N ⊂ Z ⊂ Q ⊂ R we will not dally for long
on the other sets.

• Our intent is to introduce a collection of axioms which the
elements of R have to satisfy.

• However because the properties of N, Z and Q impact
those of R it is necessary to say something about how we
might axiomatise these sets.

• We start with the simplest of these sets, N.
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Definition 1.6. The Peano axioms for N

• 1. There is an element of N denoted by 1 and an
operation + which combines 1 and any element n of N to
give another element denoted by n + 1, i.e. for every
n ∈ N we have n + 1 ∈ N.

• 2. For all m, n ∈ N, we have m = n if and only if
m + 1 = n + 1.

• 3. For every n ∈ N we have n + 1 ̸= 1.

• 4. If S is a set with the properties that (a) 1 ∈ S and (b)
whenever n ∈ S we have n + 1 ∈ S, then S = N.

• What this says is that we should think of N as being

N = {1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1, · · · }.

• Axiom 4 is the Principle of Induction.
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• We can now deduce that m + n ∈ N for any m, n ∈ N.

• Given m let S denote the set of n for which m + n ∈ N.
Then by Axiom 1 m + 1 ∈ N, so 1 ∈ S. Suppose n ∈ S.
Then m + n ∈ N and so by Axiom 1 once more we have
m + n + 1 ∈ N and so n + 1 ∈ S. Hence, by Axiom 4 we
have S = N.

• In this kind of way various other properties of N can be
established. For example if m, n ∈ N, then m+ n = n+m.

• We can also define multiplication by taking
n × 1 = 1× n = n and n × (m + 1) = (n ×m) + n and
using induction. We can then combine addition and
multiplication more generally to show that

ℓ× (m + n) = (ℓ×m) + (ℓ× n).

• Later, when developing the ideas of limits we will need to
look at the elements of N in more detail.
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• How about the integers? It would be good if we could just
build on the above.

• We could introduce a symbol 0 to mean
n + 0 = 0 + n = n, and then we could introduce an object
−n with the property that n + (−n) = 0.

• However, this begs the question, “why should this exist”.

• To avoid this we follow a different route.

• One of the more powerful techniques we have is the ability
to create more complex and richer systems out of simpler
ones.

• Thus we can think about “extending N to give Z, and
there is a very nice way of doing this by the use of ordered
pairs of natural numbers (m, n) and something called
equivalence classes.
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The Integers

• I do not want to spend too much time on this, but briefly
it goes like this. Consider (k , ℓ) with k , ℓ ∈ N.

• Two ordered pairs (k , ℓ) and (m, n) are equivalent when

k + n = ℓ+m.

• If we use A(m, n) to denote the set of ordered pairs
equivalent to (m, n), then we can define addition and
multiplication by

A(k , l) +A(m, n) = A(k + n, l +m),

A(k , l)×A(m, n) = A(km + ln, kn + lm)

and define negatives by −A(m, n) = A(n,m).
• Then we can check that these equivalence classes have all
the properties that we expect of the integers and declare
them to be the integers.

• In other words we found a way of constructing the integers
from the natural numbers.
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The Rational Numbers

• We can then use a similar procedure to construct the
rational numbers by now looking at equivalence classes of
ordered pairs (p, q) of integers p, q with q ̸= 0. For
example, let B(r , s) be the set of such ordered pairs (p, q)
with ps = rq.

• Now we can define

B(r , s) + B(r ′, s ′) = B(rs ′ + r ′s, ss ′),

B(r , s)× B(r ′, s ′) = B(rr ′, ss ′)

and again check that this results in the properties we
expect of elements of Q.

• Again I do not want to spend time checking this. The
main problem at hand at this stage is dealing with the
question of numbers such as

√
2 where something more

profound is needed.
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