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• This course has relatively little to do directly with calculus.

• Analysis was largely developed in the nineteenth century
by the need to understand what was meant by a limit and
place the fundamental theorems on limits on a sound
axiomatic basic, as had been done by Euclid and the
Pythagorean school about 2000 years earlier for geometry.

• We shall see that the idea of a limit is intimately
connected with what we mean by a number.
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• The immediate connection with calculus is that the
derivative and integral are usually both defined as a result
of a limiting process.

• Thus given a real valued function f it is usual to define
the derivative f ′ by

f ′(x) = lim
h→0

f (x + h)− f (x)

h

or if we think in terms of a curve y = f (x) in the x , y
plane, then

dy

dx
= lim

δx→0

δy

δx

where δy = y(x + δx)− y(x).

• These are, of course, just symbolic representations of the
same thing.
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• Example.
f (x) = x4.

•

f (x+h)−f (x) = (x+h)4−x4 = 4x3h+6x2h2+4xh3+h4,

•
f (x + h)− f (x)

h
= 4x3 + 6x2h + 4xh2 + h3

• Then each of the terms 6x2h, 4xh2, h3 will tend to 0 as h
tends to 0 and we will conclude that in this case

lim
h→0

f (x + h)− f (x)

h
= 4x3.
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• In calculus we learn, or at least see, many formulæ for
derivates. Maybe you can help me out by recalling some of
them.

• Let f (x) = xn (n a non-negative whole number). What is
f ′(x)?

• What about f (x) = x−1?

• Or f (x) = x−n?

• Or f (x) = x1/2?

• Let f (x) = sin x . What is f ′(x)?

• Let f (x) = arctan x . What is f ′(x)?
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• In practice the functions we come across are much more
complicated than this, so it is normal to develop some
general formulæ.

• The simplest is the sum of two general functions, suppose
f , g h are connected by f (x) = g(x) + h(x). Then

f ′(x) = g ′(x) + h′(x).

One way of thinking of this is that differentiation is a
“linear operator”.

• How about a product, f (x) = g(x)h(x)? Is there a
formula for

• How about f (x) = g(h(x))?

• f (x) = 1/h(x)?
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• Example

y = (x2 + 2)10.
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• Now we come to tricky one. Let

f (x) =
g(x)

h(x)
.

what is f ′(x)?
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A tricky example

• Now define

f (x) =

{
sin(1/x) (x ̸= 0)

0 (x = 0)

g(x) =

{
x sin(1/x) (x ̸= 0)

0 (x = 0)

h(x) =

{
x2 sin(1/x) (x ̸= 0)

0 (x = 0)

• If x ̸= 0, then each of these is differentiable, by use of the
chain product rules. For example

h′(x) = 2x sin(1/x)− cos(1/x) (x ̸= 0).

• What happens in each case when x = 0?

• How could we be sure that our guesses are correct?
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y = xn, y ′ = nxn−1,

y = sin(x), y ′ = cos(x),

y = cos(x), y ′ = − sin(x),

y = tan(x), y ′ = sec2(x),

y = ex , y ′ = ex ,

y = ln(x), y ′ = 1/x ,

y = arctan(x), y ′ =
1

1 + x2
,

y = arcsin(x), y ′ = (1− x2)−1/2,

y = u + v , y ′ = u′ + v ′,

y = uv , y ′ = u′v + uv ′,

y =
u

v
, y ′ =

u′v − uv ′

v2
.
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Inverse Functions

• Suppose that the function

y = f (x)

is such that each y corresponds to a unique x .

• Then for each y we can define a function

g(y) = x

which has the property that g(f (x)) = x . Such a function
is called an inverse function.

• Now we can apply the chain rule and obtain

g ′(f (x))f ′(x) = 1.

• In other words g ′(y) =
1

f ′(x)
.

• An important example is y = f (x) = ex and g(y) = ln y .
Then f ′(x) = ex = y , so that g(y) = 1/f ′(x) = 1/y .
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Some examples

• 1.

y = x5 − x4 + x2

y ′ = 5x4 − 4x3 + 2x .

• 2.

y = x2 sin x

y ′ = 2x sin x + x2 cos x .

• 2.

y =
1− x

1 + x

y ′ =
(1 + x)(−1)− (1− x).1

(1 + x)2
=

−2

(1 + x)2
.
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(1 + x)2
=

−2

(1 + x)2
.
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Equation of the tangent

• It is sometimes useful in applications to know the tangent
to a point (x0, f (x0)) on a curve y = f (x).

• The derivative at the point is f ′(x0) and is the slope of the
curve at that point, so will also be the slope of the
tangent.

• The equation of a line through the point (x0, y0) with
slope m is given by

y − y0 = m(x − x0).

substituting from above gives

y − f (x0) = f ′(x0)(x − x0)

which we can rearrange to give

y = f ′(x0)x + f (x0)− x0f
′(x0).
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Implicit differentiation

• Something which is sometimes useful but often isn’t
covered in calculus courses is implicit differentiation.

• Suppose that there is no simple formula connection x and
y = f (x). For example x3 + y3 − 2x + 3y = 0.

• Obviously we can differentiate both sides and obtain

3x2 + 3y2
dy

dx
− 2 + 3

dy

dx
= 0.

• Then we can solve for the derivative to obtain

dy

dx
=

2− 3x2

3y2 + 3
.

• The point (2,−1) lies on the curve. Thus

dy

dx (x ,y)=(2,−1)
= −5

3

and the tangent at (2,−1) is given by y = −5

3
x +

7

3
.
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• If a curve does not have slope 0 at a particular point, then
it cannot be a local maximum or minimum.

• Thus to find candidate extremal points we can first check
for points for which the derivative is 0.

• That is not a guarantee. The point might be a point of
inflexion.

• However if f ′(x) = 0 when x = x0 AND f ′(x) > 0 just to
the left of x0 and f ′(x) < 0 just to the right of x0,
then f must have a local maximum at x0.

• If these inequalities are reversed, then we have a local
minimum.
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• Example. y = x3 − x . Then dy
dx = 3x2 − 1 and this is 0

when x = ±1√
3
.

• If x < −1/
√
3, then x2 > 1/3, dy

dx > 0, and if

−1/
√
3 < x < 0, then x2 < 1/3 and so dy

dx < 0.

• Thus x3 − x has a local maximum at −1/
√
3.

• These inequalities are reversed in the neighbourhood of
1/

√
3, so x3 − x has a local minimum at 1/

√
3.

• Alternatively one can check d2y
dx2

= 6x . At x = ±1√
3
this is

±2
√
3.

• Note that sometimes computing the second derivative can
be a right pain and the above method is usually easier.
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• Armed with our understanding of derivatives it is often
useful in applications to sketch a relevant curve.

• Example. y = x3(x − 1)2.

• Second Example.

y =
1

x2 + x + 1
.

• Third example.

y =
x2 − 1

x(x + 2)
.
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