Introduction to Analysis: Review of Calculus

Robert C. Vaughan

November 28, 2023

```
Introduction
to Analysis:
    Review of
    Calculus
    Robert C.
    Vaughan
```

Review of Calculus

The derivative

Formulæ
Inverse Functions
Tangent
Implicit differentiation Extremal values Curve Sketching

- This course has relatively little to do directly with calculus.
- This course has relatively little to do directly with calculus.
- Analysis was largely developed in the nineteenth century by the need to understand what was meant by a limit and place the fundamental theorems on limits on a sound axiomatic basic, as had been done by Euclid and the Pythagorean school about 2000 years earlier for geometry.
- This course has relatively little to do directly with calculus.
- Analysis was largely developed in the nineteenth century by the need to understand what was meant by a limit and place the fundamental theorems on limits on a sound axiomatic basic, as had been done by Euclid and the Pythagorean school about 2000 years earlier for geometry.
- We shall see that the idea of a limit is intimately connected with what we mean by a number.

Review of Calculus

The derivative

 Formulæ- The immediate connection with calculus is that the derivative and integral are usually both defined as a result of a limiting process.
- The immediate connection with calculus is that the derivative and integral are usually both defined as a result of a limiting process.
- Thus given a real valued function f it is usual to define the derivative f^{\prime} by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

or if we think in terms of a curve $y=f(x)$ in the x, y plane, then

$$
\frac{d y}{d x}=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}
$$

where $\delta y=y(x+\delta x)-y(x)$.

- The immediate connection with calculus is that the derivative and integral are usually both defined as a result of a limiting process.
- Thus given a real valued function f it is usual to define the derivative f^{\prime} by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

or if we think in terms of a curve $y=f(x)$ in the x, y plane, then

$$
\frac{d y}{d x}=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}
$$

where $\delta y=y(x+\delta x)-y(x)$.

- These are, of course, just symbolic representations of the same thing.

```
Introduction
to Analysis:
Review of
    Calculus
Robert C.
Vaughan
- Example. \(f(x)=x^{4}\).
```


Review of

 Calculus
The derivative

 FormulæInverse Functions
Tangent
Implicit
differentiation
Extremal values

Review of

 Calculus
The derivative

 FormulæInverse Functions
Tangent
Implicit
differentiation
Extremal values

- Example.

$$
f(x)=x^{4}
$$

$$
f(x+h)-f(x)=(x+h)^{4}-x^{4}=4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}
$$

- Example.

$$
f(x)=x^{4}
$$

Review of

 Calculus$$
f(x+h)-f(x)=(x+h)^{4}-x^{4}=4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}
$$

$$
\frac{f(x+h)-f(x)}{h}=4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}
$$

- Example.

$$
f(x)=x^{4}
$$

$$
f(x+h)-f(x)=(x+h)^{4}-x^{4}=4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}
$$

$$
\frac{f(x+h)-f(x)}{h}=4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}
$$

- Then each of the terms $6 x^{2} h, 4 x h^{2}, h^{3}$ will tend to 0 as h tends to 0 and we will conclude that in this case

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=4 x^{3}
$$

- In calculus we learn, or at least see, many formulæ for derivates. Maybe you can help me out by recalling some of them.
- In calculus we learn, or at least see, many formulæ for derivates. Maybe you can help me out by recalling some of them.
- Let $f(x)=x^{n}$ (n a non-negative whole number). What is $f^{\prime}(x)$?
- In calculus we learn, or at least see, many formulæ for derivates. Maybe you can help me out by recalling some of them.
- Let $f(x)=x^{n}$ (n a non-negative whole number). What is $f^{\prime}(x)$?
- What about $f(x)=x^{-1}$?
- In calculus we learn, or at least see, many formulæ for derivates. Maybe you can help me out by recalling some of them.
- Let $f(x)=x^{n}$ (n a non-negative whole number). What is $f^{\prime}(x)$?
- What about $f(x)=x^{-1}$?
- $\operatorname{Or} f(x)=x^{-n}$?
- In calculus we learn, or at least see, many formulæ for derivates. Maybe you can help me out by recalling some of them.
- Let $f(x)=x^{n}$ (n a non-negative whole number). What is $f^{\prime}(x)$?
- What about $f(x)=x^{-1}$?
- Or $f(x)=x^{-n}$?
- $\operatorname{Or} f(x)=x^{1 / 2}$?
- In calculus we learn, or at least see, many formulæ for derivates. Maybe you can help me out by recalling some of them.
- Let $f(x)=x^{n}$ (n a non-negative whole number). What is $f^{\prime}(x)$?
- What about $f(x)=x^{-1}$?
- Or $f(x)=x^{-n}$?
- Or $f(x)=x^{1 / 2}$?
- Let $f(x)=\sin x$. What is $f^{\prime}(x)$?
- In calculus we learn, or at least see, many formulæ for derivates. Maybe you can help me out by recalling some of them.
- Let $f(x)=x^{n}$ (n a non-negative whole number). What is $f^{\prime}(x)$?
- What about $f(x)=x^{-1}$?
- Or $f(x)=x^{-n}$?
- $\operatorname{Or} f(x)=x^{1 / 2}$?
- Let $f(x)=\sin x$. What is $f^{\prime}(x)$?
- Let $f(x)=\arctan x$. What is $f^{\prime}(x)$?

```
Introduction
to Analysis:
    Review of
    Calculus
Robert C.
Vaughan
- In practice the functions we come across are much more complicated than this, so it is normal to develop some general formulæ.
```

- In practice the functions we come across are much more complicated than this, so it is normal to develop some general formulæ.
- The simplest is the sum of two general functions, suppose $f, g h$ are connected by $f(x)=g(x)+h(x)$. Then

$$
f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)
$$

One way of thinking of this is that differentiation is a "linear operator".

- In practice the functions we come across are much more complicated than this, so it is normal to develop some general formulæ.
- The simplest is the sum of two general functions, suppose $f, g h$ are connected by $f(x)=g(x)+h(x)$. Then

$$
f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)
$$

One way of thinking of this is that differentiation is a "linear operator".

- How about a product, $f(x)=g(x) h(x)$? Is there a formula for
- In practice the functions we come across are much more complicated than this, so it is normal to develop some general formulæ.
- The simplest is the sum of two general functions, suppose $f, g h$ are connected by $f(x)=g(x)+h(x)$. Then

$$
f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)
$$

One way of thinking of this is that differentiation is a "linear operator".

- How about a product, $f(x)=g(x) h(x)$? Is there a formula for
- How about $f(x)=g(h(x))$?
- In practice the functions we come across are much more complicated than this, so it is normal to develop some general formulæ.
- The simplest is the sum of two general functions, suppose $f, g h$ are connected by $f(x)=g(x)+h(x)$. Then

$$
f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)
$$

One way of thinking of this is that differentiation is a "linear operator".

- How about a product, $f(x)=g(x) h(x)$? Is there a formula for
- How about $f(x)=g(h(x))$?
- $f(x)=1 / h(x)$?

```
Introduction
to Analysis:
    Review of
    Calculus
    Robert C.
    Vaughan
```

Review of
Calculus

The derivative Formulæ
Inverse Functions
Tangent

- Example

$$
y=\left(x^{2}+2\right)^{10}
$$

The derivative Formulæ
Inverse Functions
Tangent
Implicit differentiation Extremal values Curve Sketching

- Now we come to tricky one. Let

$$
f(x)=\frac{g(x)}{h(x)}
$$

what is $f^{\prime}(x)$?

- Now define

$$
\begin{aligned}
& f(x)= \begin{cases}\sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases} \\
& g(x)= \begin{cases}x \sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases} \\
& h(x)= \begin{cases}x^{2} \sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases}
\end{aligned}
$$

A tricky example

$$
\begin{array}{r}
f(x)= \begin{cases}\sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases} \\
g(x)= \begin{cases}x \sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases} \\
h(x)= \begin{cases}x^{2} \sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases}
\end{array}
$$

- If $x \neq 0$, then each of these is differentiable, by use of the chain product rules. For example

$$
h^{\prime}(x)=2 x \sin (1 / x)-\cos (1 / x) \quad(x \neq 0)
$$

A tricky example

- Now define

$$
\begin{array}{r}
f(x)= \begin{cases}\sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases} \\
g(x)= \begin{cases}x \sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases} \\
h(x)= \begin{cases}x^{2} \sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases}
\end{array}
$$

- If $x \neq 0$, then each of these is differentiable, by use of the chain product rules. For example

$$
h^{\prime}(x)=2 x \sin (1 / x)-\cos (1 / x) \quad(x \neq 0)
$$

- What happens in each case when $x=0$?

A tricky example

- Now define

$$
\begin{aligned}
& f(x)= \begin{cases}\sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases} \\
& g(x)= \begin{cases}x \sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases} \\
& h(x)= \begin{cases}x^{2} \sin (1 / x) & (x \neq 0) \\
0 & (x=0)\end{cases}
\end{aligned}
$$

- If $x \neq 0$, then each of these is differentiable, by use of the chain product rules. For example

$$
h^{\prime}(x)=2 x \sin (1 / x)-\cos (1 / x) \quad(x \neq 0)
$$

- What happens in each case when $x=0$?
- How could we be sure that our guesses are correct?

Introduction to Analysis: Review of Calculus

$$
\begin{aligned}
y=x^{n}, & y^{\prime}=n x^{n-1}, \\
y=\sin (x), & y^{\prime}=\cos (x), \\
y=\cos (x), & y^{\prime}=-\sin (x), \\
y=\tan (x), & y^{\prime}=\sec ^{2}(x), \\
y=e^{x}, & y^{\prime}=e^{x}, \\
y=\ln (x), & y^{\prime}=1 / x, \\
y=\arctan (x), & y^{\prime}=\frac{1}{1+x^{2}}, \\
y=\arcsin (x), & y^{\prime}=\left(1-x^{2}\right)^{-1 / 2}, \\
y=u+v, & y^{\prime}=u^{\prime}+v^{\prime}, \\
y=u v, & y^{\prime}=u^{\prime} v+u v^{\prime}, \\
y=\frac{u}{v}, & y^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} .
\end{aligned}
$$

Review of Calculus

- Suppose that the function

$$
y=f(x)
$$

is such that each y corresponds to a unique x.

Inverse Functions

- Suppose that the function

$$
y=f(x)
$$

is such that each y corresponds to a unique x.

- Then for each y we can define a function

$$
g(y)=x
$$

which has the property that $g(f(x))=x$. Such a function is called an inverse function.

Inverse Functions

- Suppose that the function

$$
y=f(x)
$$

is such that each y corresponds to a unique x.

- Then for each y we can define a function

$$
g(y)=x
$$

which has the property that $g(f(x))=x$. Such a function is called an inverse function.

- Now we can apply the chain rule and obtain

$$
g^{\prime}(f(x)) f^{\prime}(x)=1
$$

Inverse Functions

- Suppose that the function

$$
y=f(x)
$$

is such that each y corresponds to a unique x.

- Then for each y we can define a function

$$
g(y)=x
$$

which has the property that $g(f(x))=x$. Such a function is called an inverse function.

- Now we can apply the chain rule and obtain

$$
g^{\prime}(f(x)) f^{\prime}(x)=1
$$

- In other words $g^{\prime}(y)=\frac{1}{f^{\prime}(x)}$.

Inverse Functions

- Suppose that the function

$$
y=f(x)
$$

is such that each y corresponds to a unique x.

- Then for each y we can define a function

$$
g(y)=x
$$

which has the property that $g(f(x))=x$. Such a function is called an inverse function.

- Now we can apply the chain rule and obtain

$$
g^{\prime}(f(x)) f^{\prime}(x)=1
$$

- In other words $g^{\prime}(y)=\frac{1}{f^{\prime}(x)}$.
- An important example is $y=f(x)=e^{x}$ and $g(y)=\ln y$. Then $f^{\prime}(x)=e^{x}=y$, so that $g(y)=1 / f^{\prime}(x)=1 / y$.

Introduction to Analysis: Review of
Calculus
Robert C.
Vaughan

Review of Calculus

The derivative

Formulæ
Inverse Functions
Tangent
Implicit
differentiation
Extremal values

Curve Sketching

$$
\begin{aligned}
y & =x^{5}-x^{4}+x^{2} \\
y^{\prime} & =5 x^{4}-4 x^{3}+2 x
\end{aligned}
$$

Some examples

- 1.

Some examples

$$
\begin{aligned}
y & =x^{5}-x^{4}+x^{2} \\
y^{\prime} & =5 x^{4}-4 x^{3}+2 x
\end{aligned}
$$

- 2.

$$
\begin{aligned}
y & =x^{2} \sin x \\
y^{\prime} & =2 x \sin x+x^{2} \cos x
\end{aligned}
$$

$$
\begin{aligned}
y & =x^{5}-x^{4}+x^{2} \\
y^{\prime} & =5 x^{4}-4 x^{3}+2 x
\end{aligned}
$$

- 2.

$$
\begin{aligned}
y & =x^{2} \sin x \\
y^{\prime} & =2 x \sin x+x^{2} \cos x
\end{aligned}
$$

- 2.

$$
\begin{aligned}
y & =\frac{1-x}{1+x} \\
y^{\prime} & =\frac{(1+x)(-1)-(1-x) \cdot 1}{(1+x)^{2}}=\frac{-2}{(1+x)^{2}}
\end{aligned}
$$

Introduction to Analysis: Review of
 Equation of the tangent

Calculus
Robert C.
Vaughan

- It is sometimes useful in applications to know the tangent to a point $\left(x_{0}, f\left(x_{0}\right)\right)$ on a curve $y=f(x)$.

Equation of the tangent

- It is sometimes useful in applications to know the tangent to a point $\left(x_{0}, f\left(x_{0}\right)\right)$ on a curve $y=f(x)$.
- The derivative at the point is $f^{\prime}\left(x_{0}\right)$ and is the slope of the curve at that point, so will also be the slope of the tangent.

Equation of the tangent

- It is sometimes useful in applications to know the tangent to a point $\left(x_{0}, f\left(x_{0}\right)\right)$ on a curve $y=f(x)$.
- The derivative at the point is $f^{\prime}\left(x_{0}\right)$ and is the slope of the curve at that point, so will also be the slope of the tangent.
- The equation of a line through the point $\left(x_{0}, y_{0}\right)$ with slope m is given by

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

substituting from above gives

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

which we can rearrange to give

$$
y=f^{\prime}\left(x_{0}\right) x+f\left(x_{0}\right)-x_{0} f^{\prime}\left(x_{0}\right)
$$

Introduction

- Something which is sometimes useful but often isn't covered in calculus courses is implicit differentiation.

Review of Calculus

Implicit differentiation

- Something which is sometimes useful but often isn't covered in calculus courses is implicit differentiation.
- Suppose that there is no simple formula connection x and $y=f(x)$. For example $x^{3}+y^{3}-2 x+3 y=0$.

Implicit differentiation

- Something which is sometimes useful but often isn't covered in calculus courses is implicit differentiation.
- Suppose that there is no simple formula connection x and $y=f(x)$. For example $x^{3}+y^{3}-2 x+3 y=0$.
- Obviously we can differentiate both sides and obtain

$$
3 x^{2}+3 y^{2} \frac{d y}{d x}-2+3 \frac{d y}{d x}=0
$$

Implicit differentiation

- Something which is sometimes useful but often isn't covered in calculus courses is implicit differentiation.
- Suppose that there is no simple formula connection x and $y=f(x)$. For example $x^{3}+y^{3}-2 x+3 y=0$.
- Obviously we can differentiate both sides and obtain

$$
3 x^{2}+3 y^{2} \frac{d y}{d x}-2+3 \frac{d y}{d x}=0
$$

- Then we can solve for the derivative to obtain

$$
\frac{d y}{d x}=\frac{2-3 x^{2}}{3 y^{2}+3}
$$

- Something which is sometimes useful but often isn't covered in calculus courses is implicit differentiation.
- Suppose that there is no simple formula connection x and $y=f(x)$. For example $x^{3}+y^{3}-2 x+3 y=0$.
- Obviously we can differentiate both sides and obtain

$$
3 x^{2}+3 y^{2} \frac{d y}{d x}-2+3 \frac{d y}{d x}=0
$$

- Then we can solve for the derivative to obtain

$$
\frac{d y}{d x}=\frac{2-3 x^{2}}{3 y^{2}+3}
$$

- The point $(2,-1)$ lies on the curve. Thus

$$
\frac{d y}{d x}_{(x, y)=(2,-1)}=-\frac{5}{3}
$$

and the tangent at $(2,-1)$ is given by $y=-\frac{5}{3} x+\frac{7}{3}$.

```
Introduction
to Analysis:
    Review of
    Calculus
Robert C.
Vaughan
- If a curve does not have slope 0 at a particular point, then it cannot be a local maximum or minimum.
```

- If a curve does not have slope 0 at a particular point, then it cannot be a local maximum or minimum.
- Thus to find candidate extremal points we can first check for points for which the derivative is 0 .
- If a curve does not have slope 0 at a particular point, then it cannot be a local maximum or minimum.
- Thus to find candidate extremal points we can first check for points for which the derivative is 0 .
- That is not a guarantee. The point might be a point of inflexion.
- If a curve does not have slope 0 at a particular point, then it cannot be a local maximum or minimum.
- Thus to find candidate extremal points we can first check for points for which the derivative is 0 .
- That is not a guarantee. The point might be a point of inflexion.
- However if $f^{\prime}(x)=0$ when $x=x_{0}$ AND $f^{\prime}(x)>0$ just to the left of x_{0} and $f^{\prime}(x)<0$ just to the right of x_{0}, then f must have a local maximum at x_{0}.
- If a curve does not have slope 0 at a particular point, then it cannot be a local maximum or minimum.
- Thus to find candidate extremal points we can first check for points for which the derivative is 0 .
- That is not a guarantee. The point might be a point of inflexion.
- However if $f^{\prime}(x)=0$ when $x=x_{0}$ AND $f^{\prime}(x)>0$ just to the left of x_{0} and $f^{\prime}(x)<0$ just to the right of x_{0}, then f must have a local maximum at x_{0}.
- If these inequalities are reversed, then we have a local minimum.
Introduction to Analysis: Review of
Calculus

Review of

 Calculus
The derivative

 FormulæRobert c.
Vaughan \quad - Example. $y=x^{3}-x$. Then $\frac{d y}{d x}=3 x^{2}-1$ and this is 0 when $x=\frac{ \pm 1}{\sqrt{3}}$.

- Example. $y=x^{3}-x$. Then $\frac{d y}{d x}=3 x^{2}-1$ and this is 0 when $x=\frac{ \pm 1}{\sqrt{3}}$.
- If $x<-1 / \sqrt{3}$, then $x^{2}>1 / 3, \frac{d y}{d x}>0$, and if $-1 / \sqrt{3}<x<0$, then $x^{2}<1 / 3$ and so $\frac{d y}{d x}<0$.
- Example. $y=x^{3}-x$. Then $\frac{d y}{d x}=3 x^{2}-1$ and this is 0 when $x=\frac{ \pm 1}{\sqrt{3}}$.
- If $x<-1 / \sqrt{3}$, then $x^{2}>1 / 3, \frac{d y}{d x}>0$, and if $-1 / \sqrt{3}<x<0$, then $x^{2}<1 / 3$ and so $\frac{d y}{d x}<0$.
- Thus $x^{3}-x$ has a local maximum at $-1 / \sqrt{3}$.
- Example. $y=x^{3}-x$. Then $\frac{d y}{d x}=3 x^{2}-1$ and this is 0 when $x=\frac{ \pm 1}{\sqrt{3}}$.
- If $x<-1 / \sqrt{3}$, then $x^{2}>1 / 3, \frac{d y}{d x}>0$, and if $-1 / \sqrt{3}<x<0$, then $x^{2}<1 / 3$ and so $\frac{d y}{d x}<0$.
- Thus $x^{3}-x$ has a local maximum at $-1 / \sqrt{3}$.
- These inequalities are reversed in the neighbourhood of $1 / \sqrt{3}$, so $x^{3}-x$ has a local minimum at $1 / \sqrt{3}$.
- Example. $y=x^{3}-x$. Then $\frac{d y}{d x}=3 x^{2}-1$ and this is 0 when $x=\frac{ \pm 1}{\sqrt{3}}$.
- If $x<-1 / \sqrt{3}$, then $x^{2}>1 / 3, \frac{d y}{d x}>0$, and if $-1 / \sqrt{3}<x<0$, then $x^{2}<1 / 3$ and so $\frac{d y}{d x}<0$.
- Thus $x^{3}-x$ has a local maximum at $-1 / \sqrt{3}$.
- These inequalities are reversed in the neighbourhood of $1 / \sqrt{3}$, so $x^{3}-x$ has a local minimum at $1 / \sqrt{3}$.
- Alternatively one can check $\frac{d^{2} y}{d x^{2}}=6 x$. At $x=\frac{ \pm 1}{\sqrt{3}}$ this is $\pm 2 \sqrt{3}$.
- Example. $y=x^{3}-x$. Then $\frac{d y}{d x}=3 x^{2}-1$ and this is 0 when $x=\frac{ \pm 1}{\sqrt{3}}$.
- If $x<-1 / \sqrt{3}$, then $x^{2}>1 / 3, \frac{d y}{d x}>0$, and if $-1 / \sqrt{3}<x<0$, then $x^{2}<1 / 3$ and so $\frac{d y}{d x}<0$.
- Thus $x^{3}-x$ has a local maximum at $-1 / \sqrt{3}$.
- These inequalities are reversed in the neighbourhood of $1 / \sqrt{3}$, so $x^{3}-x$ has a local minimum at $1 / \sqrt{3}$.
- Alternatively one can check $\frac{d^{2} y}{d x^{2}}=6 x$. At $x=\frac{ \pm 1}{\sqrt{3}}$ this is $\pm 2 \sqrt{3}$.
- Note that sometimes computing the second derivative can be a right pain and the above method is usually easier.
- Armed with our understanding of derivatives it is often useful in applications to sketch a relevant curve.
- Armed with our understanding of derivatives it is often useful in applications to sketch a relevant curve.
- Example. $y=x^{3}(x-1)^{2}$.
- Armed with our understanding of derivatives it is often useful in applications to sketch a relevant curve.
- Example. $y=x^{3}(x-1)^{2}$.
- Second Example.

$$
y=\frac{1}{x^{2}+x+1}
$$

- Armed with our understanding of derivatives it is often useful in applications to sketch a relevant curve.
- Example. $y=x^{3}(x-1)^{2}$.
- Second Example.

$$
y=\frac{1}{x^{2}+x+1}
$$

- Third example.

$$
y=\frac{x^{2}-1}{x(x+2)}
$$

