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® We shall see that the idea of a limit is intimately
connected with what we mean by a number.
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® The immediate connection with calculus is that the
derivative and integral are usually both defined as a result

of a limiting process.
® Thus given a real valued function f it is usual to define
the derivative f’ by

F(x + h) — F(x)

fl(x)=li
09 = fim,
or if we think in terms of a curve y = f(x) in the x,y

plane, then
dy .0y
A °y
dx 6>1m0 0x

where 0y = y(x + dx) — y(x).
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of a limiting process.
® Thus given a real valued function f it is usual to define
the derivative f’ by

F(x + h) — F(x)

F(x) = I
0= fim,

or if we think in terms of a curve y = f(x) in the x,y
plane, then dy sy
dx ~ 5em0 x
where 0y = y(x + dx) — y(x).
® These are, of course, just symbolic representations of the
same thing.
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® Example.

f(x) = x*.

f(x4+h)—f(x) = (x+h)* —x* = 43h+6x2h? +4xh® + h*,
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® Example.

f(x) = x*.

f(x+ h) —f(x)

f(x4+h)—f(x) = (x+h)* —x* = 43h+6x2h? +4xh® + h*,
L]
h

= 4x3 + 6x%h + 4xh? + h3
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. Fx+h)—F(x) = (x+h)* —x* = &3 h+6x2 0 +4xh® + h,
: [ ]
f h) —f
(x + /)7 () = 4x3 + 6x%h + 4xh® + K3
® Then each of the terms 6x2h, 4xh?, h3 will tend to 0 as h

tends to 0 and we will conclude that in this case

i f(x+ h) — f(x)
hino h

= 4x3.
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The derivative

In calculus we learn, or at least see, many formulae for
derivates. Maybe you can help me out by recalling some of
them.

Let f(x) = x" (n a non-negative whole number). What is
f'(x)?

What about f(x) = x717?

Or f(x) =x="7

Or f(x) = x%/??

Let f(x) =sinx. What is f'(x)?
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In calculus we learn, or at least see, many formulae for
derivates. Maybe you can help me out by recalling some of
them.

Let f(x) = x" (n a non-negative whole number). What is
f'(x)?

What about f(x) = x717?

Or f(x) =x="7

Or f(x) = x%/??

Let f(x) =sinx. What is f'(x)?

Let f(x) = arctan x. What is f'(x)?
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® |n practice the functions we come across are much more
complicated than this, so it is normal to develop some

general formulae.
® The simplest is the sum of two general functions, suppose
f, g h are connected by f(x) = g(x) + h(x). Then

Fi(x) = g'(x) + H'(x).

One way of thinking of this is that differentiation is a

e "
linear operator”.
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® |n practice the functions we come across are much more
complicated than this, so it is normal to develop some
general formulae.

® The simplest is the sum of two general functions, suppose
f, g h are connected by f(x) = g(x) + h(x). Then

Fi(x) = g'(x) + H'(x).

One way of thinking of this is that differentiation is a
“linear operator”.

® How about a product, f(x) = g(x)h(x)? Is there a
formula for

® How about f(x) = g(h(x))?
e f(x)=1/h(x)?
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® Now we come to tricky one. Let

) = 8X)
f(x)= ho)”
what is '(x)?
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® Now define

_Jsin(1/x) (x #0)
flo = {o (x = 0)

200 = {xsin(l/x) (x #0)
0 (x=0)

| x%sin(1/x)  (x #0)
) = {0 (x =0)
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® |f x # 0, then each of these is differentiable, by use of the
chain product rules. For example

H'(x) = 2xsin(1/x) — cos(1/x) (x # 0).
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® |f x # 0, then each of these is differentiable, by use of the
chain product rules. For example

H'(x) = 2xsin(1/x) — cos(1/x) (x # 0).

® What happens in each case when x = 07



A tricky example

Introduction
to Analysis:

;:éucs. ® Now define
f(x) = {;‘n(l/X) Ex f 0)
The dervate x =0)
T ) xsin(1/x)  (x #0)
g0 = {0 (x =0)
x?sin(1/x)  (x #0)
(x=0)

h(x) =
() { :
® |f x # 0, then each of these is differentiable, by use of the
chain product rules. For example

(x #0).

H'(x) = 2xsin(1/x) — cos(1/x)

® What happens in each case when x = 07
® How could we be sure that our guesses are correct?
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= In(x),

y = arctan(x),

y = arcsin(x),

_y—U+V,
y = uv,
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® Suppose that the function

y = f(x)
is such that each y corresponds to a unique x.
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® Suppose that the function

y =f(x)
is such that each y corresponds to a unique x.
® Then for each y we can define a function

gly) =x

which has the property that g(f(x)) = x. Such a function
is called an inverse function.
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® Then for each y we can define a function

gly) =x

which has the property that g(f(x)) = x. Such a function

is called an inverse function.
® Now we can apply the chain rule and obtain

g(fl))f'(x) =1
1
- (%)

® In other words g'(y)
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y = f(x)
L is such that each y corresponds to a unique x
e Foncns ® Then for each y we can define a function
S gly) =x
which has the property that g(f(x)) = x. Such a function
is called an inverse function.
® Now we can apply the chain rule and obtain

g(fl))f'(x) =1

1
® In other words g'(y) = )
® An important example is y = f(x) = €* and g(y) =Iny
Then f'(x) = e¥ =y, so that g(y) = 1/f'(x) =1/y.
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y:x5_x4+X2

v'= 5x* — 4x3 4+ 2x
[ ) 2

y' = 2xsinx + X2 cos X.
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y/:5x4_4X3+2x.
* 2
}’=x25inx
y' = 2x sin x + x° cos x.
® 2
— 1_X
Y= 1+ x
y -0 -(-x1 -2

(1+x)? T 1+ x)?
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® |t is sometimes useful in applications to know the tangent
to a point (xp, f(xp)) on a curve y = f(x).
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Equation of the tangent
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e to a point (xo, f(x0)) on a curve y = f(x).

® The derivative at the point is f'(xp) and is the slope of the
curve at that point, so will also be the slope of the

tangent.

T
Formula
In Functions
Tangent
Impl

differentiation
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Robert C. ® |t is sometimes useful in applications to know the tangent
Vouehen to a point (xo, f(xp)) on a curve y = f(x).
® The derivative at the point is f'(xp) and is the slope of the
curve at that point, so will also be the slope of the

i tangent.
g ® The equation of a line through the point (xo, yp) with

slope m is given by
y = yo = m(x — Xo).
substituting from above gives
y = f(x0) = '(x0)(x — x0)
which we can rearrange to give

y = f'(x0)x + f(x0) — xof'(x0).



® Something which is sometimes useful but often isn't

covered in calculus courses is implicit differentiation.
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Something which is sometimes useful but often isn't
o

covered in calculus courses is implicit differentiation.

Suppose that there is no simple formula connection x and
y = f(x). For example x3 + y3 — 2x + 3y = 0.
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covered in calculus courses is implicit differentiation.

® Suppose that there is no simple formula connection x and
y = f(x). For example x3 4+ y3 — 2x +3y = 0.

® QObviously we can differentiate both sides and obtain

, dy d
3+ 3> —2+3d—§ 0.
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Something which is sometimes useful but often isn't
covered in calculus courses is implicit differentiation.
Suppose that there is no simple formula connection x and
y = f(x). For example x3 4+ y3 — 2x +3y = 0.

Obviously we can differentiate both sides and obtain

5 dy dy
3x2 4 3y Ix 24 35 0.
® Then we can solve for the derivative to obtain
dy 2—3x°
dx 3,213




Implicit differentiation
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Robert C. ® Something which is sometimes useful but often isn't

Vavehan covered in calculus courses is implicit differentiation.

® Suppose that there is no simple formula connection x and
= f(x). For example x3 + y3 — 2x + 3y = 0.

y = f(x).
® QObviously we can differentiate both sides and obtain
d
Y _o.

3x2 4 3y d -2+ 35
® Then we can solve for the derivative to obtain
dy 2-3x°
dx 3y?+3’
® The point (2, —1) lies on the curve. Thus
dy 5
dx (x,y)=(2,—1) 3

5
and the tangent at (2, —1) is given by y = —3X + 3



® |f a curve does not have slope 0 at a particular point, then
it cannot be a local maximum or minimum.
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e However if f/(x) = 0 when x = xo AND f’(x) > 0 just to
the left of xo and f'(x) < 0 just to the right of xg,
then f must have a local maximum at xg.
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Vergien ® |f a curve does not have slope 0 at a particular point, then

it cannot be a local maximum or minimum.

® Thus to find candidate extremal points we can first check
- for points for which the derivative is 0.
Tai

® That is not a guarantee. The point might be a point of
B inflexion.

e However if f/(x) = 0 when x = xo AND f’(x) > 0 just to
the left of xo and f'(x) < 0 just to the right of xg,
then f must have a local maximum at xg.

® If these inequalities are reversed, then we have a local
minimum.
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~1/v3 < x <0, then x2 < 1/3 and so & < 0.
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e Example. y = x> — x. Then % =3x? — 1 and this is 0

_ %1
when x = Vel

* If x < —1//3, then x> > 1/3, & > 0, and if
~1/v3 < x <0, then x2 < 1/3 and so & < 0.
e Thus x3 — x has a local maximum at —1/\@.

® These inequalities are reversed in the neighbourhood of
1/4/3, so x3 — x has a local minimum at 1/+/3.
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R ® Example. y = x3 — x. Then 9 — 3x2 _ 1 and this is 0
Vaughan dx

when x = 7
* If x < —1//3, then x> > 1/3, & > 0, and if
~1/v3 < x <0, then x2 < 1/3 and so & < 0.
e Thus x3 — x has a local maximum at —1/\@.

® These inequalities are reversed in the neighbourhood of
1/4/3, so x3 — x has a local minimum at 1/+/3.

o Alternatively one can check d y =6x. At x = % this is

+2/3.
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Extremal values

Example. y = x3 — x. Then % =3x2 — 1 and this is 0

when x = 7

If x < —1/+/3, then x2 > 1/3, & > 0, and if

~1/v3 < x <0, then x2 < 1/3 and so & < 0.

Thus x3 — x has a local maximum at —1/\@.

These inequalities are reversed in the neighbourhood of
1/4/3, so x3 — x has a local minimum at 1/+/3.

Alternatively one can check d y =6x. At x = % this is

+2/3.

Note that sometimes computing the second derivative can
be a right pain and the above method is usually easier.
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useful in applications to sketch a relevant curve.
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® Armed with our understanding of derivatives it is often
useful in applications to sketch a relevant curve.
® Example. y = x3(x —1)2.
® Second Example.
1
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The derivative
Formulz
Inverse Functions
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Implicit
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Curve Sketching

® Armed with our understanding of derivatives it is often
useful in applications to sketch a relevant curve.

® Example. y = x3(x —1)2.
® Second Example.

® Third example.
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