MATH 401 INTRODUCTION TO ANALYSIS, SPRING TERM 2024, SOLUTIONS 11

1. Decide the convergence of the each of the following series, in each case proving your assertion (i) $\sum_{n=1}^{\infty} \frac{2}{n^{3}+1}$, (ii) $\sum_{n=1}^{\infty} \frac{3}{2 n+1}$, (iii) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n-1)!} 3^{n}$, (iv) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n-1)!} 5^{n}$, (v) $\sum_{n=1}^{\infty}(-1)^{n-1} n^{-1 / 3}$, (vi) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)(-1)^{n}$.
(i) converges by the comparison test since $3 /\left(n^{3}+2\right) \leq 3 n^{-2}$ and $\sum_{n=1}^{\infty} n^{-2}$ converges. (ii) diverges by the comparison test since $3 /(2 n+1) \geq n^{-1}$ and $\sum_{n=1}^{\infty} n^{-1}$ diverges. (iii) converges by the ratio test as $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|=\lim _{n \rightarrow \infty}(n+1)^{2}(2 n+$ $1)^{-1}(2 n)^{-1}=3 / 4<1$. (iv) diverges by the ratio test as $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|=5 / 4>$ 1. (v) $n^{-1 / 3}$ is a decreasing sequence tending to 0 . Hence the series converges by the Liebnitz test. (vi) diverges since the general term does not tend to 0 .
2. Prove that $\sum_{n=1}^{\infty} x^{n} \frac{(n!)^{3}}{(3 n)!}$ converges when $|x|<27$ and diverges when $|x|>27$.

The ratio $\left|a_{n+1} / a_{n}\right|=|x|(n+1)^{3}(3 n+1)^{-1}(3 n+2)^{-1}(3 n+3)^{-1} \rightarrow|x| / 27$ as $n \rightarrow \infty$. Hence the series converges when $|x|<27$ and diverges when $|x|>27$.
3. Prove that $\sum_{n=1}^{\infty} x^{n} \frac{(-1)^{(n-1)}}{(2 n-1)!}$ converges for all real x.

The ratio test gives $|x|(2 n)^{-1}(2 n+1)^{-1} \rightarrow 0$ as $n \rightarrow \infty$. Hence the series converges for all real x.
4. This question uses the notation and results of homework 10. (i) Prove that $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges, and let e be its value. (ii) Prove that for $n \in \mathbb{N}, a_{n}=1+$ $\sum_{m=1}^{n} \frac{1}{m!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right)$ and deduce that $a_{n} \leq e$ and hence that $\lim _{n \rightarrow \infty} a_{n} \leq e$. (iii) Suppose $1 \leq r \leq n$. Prove that
$1+\sum_{m=1}^{r} \frac{1}{m!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right) \leq a_{n}$ and deduce that $1+\sum_{m=1}^{r} \frac{1}{m!} \leq$ $\lim _{n \rightarrow \infty} a_{n}$ and hence that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow} b_{n}=e$.
(i) The ratio test has $l=0$. (ii) By the binomial theorem,

$$
a_{n}=1+\sum_{m=1}^{n} \frac{1}{m!} \cdot \frac{n!}{(n-m)!} \cdot \frac{1}{n^{m}}=1+\sum_{m=1}^{n} \frac{1}{m!} \cdot \frac{n(n-1) \ldots(n-m+1)}{n^{m}} .
$$

The general term is $\leq 1 / m!$, so $a_{n} \leq e$. We know from homework 10 that $\lim _{n \rightarrow \infty} a_{n}$ exists. (iii) Each term in the series in (ii) is non-negative. Hence

$$
1+\sum_{m=1}^{r} \frac{1}{m!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right) \leq a_{n} .
$$

Let $n \rightarrow \infty$ on both sides of this. Thus $1+\sum_{m=1}^{r} \frac{1}{m!} \leq \lim _{n \rightarrow \infty} a_{n}$. Now let $r \rightarrow \infty$. Thus $e \leq \lim _{n \rightarrow \infty} a_{n}$ and then the final conclusion follows from (ii) and homework 10.

