MATH 401 INTRODUCTION TO ANALYSIS-I, SPRING TERM 2024, SOLUTIONS 10

Throughout we define $a_{n}=(1+1 / n)^{n}(n \in \mathbb{N}), b_{n}=(1-1 / n)^{-n}(n=2,3,4, \ldots)$.

1. (i) Prove that for $n \in \mathbb{N}$ we have $\left(\frac{n^{2}+2 n}{n^{2}+2 n+1}\right)^{n+1} \geq \frac{n}{n+1}$. (ii) Prove that for $n \in \mathbb{N},\left(\frac{n+2}{n+1}\right)^{n+1}\left(\frac{n}{n+1}\right)^{n} \geq 1$. (iii) Prove that $\left\langle a_{n}\right\rangle$ is increasing, and $a_{n} \geq 2$ for every $n \in \mathbb{N}$.
(i) By the binomial inequality $L H S \geq 1-\frac{n+1}{(n+1)^{2}}=\frac{n}{n+1}$. (ii) $L H S=\frac{L H S(i)}{R H S(i)} \geq 1$. (iii) $a_{n+1} / a_{n}=L H S(i i)$.
2. (i) Suppose that $n \geq 2$. Prove that $\left(\frac{n^{2}}{n^{2}-1}\right)^{n+1} \geq \frac{n}{n-1}$. (ii) Suppose that $n \geq 2$. Prove that $\left(\frac{n}{n-1}\right)^{n}\left(\frac{n}{n+1}\right)^{n+1} \geq 1$. (iii) Prove that $\left\langle b_{n}\right\rangle$ is decreasing and $b_{n} \leq 4$.
(i) By the binomial inequality $L H S \geq 1+\frac{n+1}{n^{2}-1}=\frac{n}{n-1}$. (ii) $L H S=\frac{L H S(i)}{R H S(i)} \geq 1$. (iii) $b_{n} / b_{n+1}=L H S(i i)$.
3. (i) Suppose that $n \geq 2$. Prove that $1-1 / n \leq a_{n} / b_{n} \leq 1$. (ii) Suppose that $n \geq 2$. Deduce that $a_{n} \leq 4, b_{n} \geq 2,\left\langle a_{n}\right\rangle$ converges, $\left\langle b_{n}\right\rangle$ converges, and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.
(i) We have $\frac{a_{n}}{b_{n}}=\left(1-\frac{1}{n^{2}}\right)^{n}$. Thus $a_{n} / b_{n}<1$, and by the binomial inequality $a_{n} / b_{n} \geq 1-1 / n$. (ii) By 3(i) and 2(iii), $a_{n} \leq b_{n} \leq 4\left(^{*}\right)$. By 3(i) and 1(iii), $b_{n} \geq a_{n} \geq 2\left({ }^{* *}\right)$. By 1(iii) $\left\langle a_{n}\right\rangle$ is increasing and by $\left(^{*}\right)$ is bounded above. By 2 (iii) $\left\langle b_{n}\right\rangle$ is decreasing and by $\left({ }^{* *}\right)$ is bounded below. Thus both sequences converge and in each case the limit is at least 2. By the combination theorem $\left\langle a_{n} / b_{n}\right\rangle$ converges to the ratio of the limits. Moreover by $3(\mathrm{i})$ and the sandwich theorem $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$.
