MATH 401 INTRODUCTION TO ANALYSIS, SPRING TERM 2024, SOLUTIONS 7

1. Let $\mathcal{U}=\left\{\frac{2 n+1}{n+1}: n \in \mathbb{N}\right\}$.
(i) Prove that \mathcal{U} is non-empty and bounded above by 2 .
(ii) Prove that if a is a real number with $a<2$, then there is an $n \in \mathbb{N}$ such that $a<\frac{2 n+1}{n+1}$.
(iii) Prove that $\sup \mathcal{U}=2$.
(i) We have $\frac{3}{2}=\frac{2+1}{1+1} \in \mathcal{U}$. Moreover, for every $n \in \mathbb{N}$ we have $\frac{2 n+1}{n+1}=2-\frac{1}{n+1}<2$. Hence \mathcal{U} is non-empty and bounded above by 2. (ii) By the Archimedean property there is an $n \in \mathbb{N}$ such that $n>\frac{1}{2-a}-1$. Hence $n+1>\frac{1}{2-a}$, so that $2-a>\frac{1}{n+1}$ and $\frac{2 n+1}{n+1}>a$. (iii) By (i) $\sup \mathcal{U}$ exists, and $\sup \mathcal{U} \leq 2$. By (ii) if $a<2$, then a cannot be an upper bound for \mathcal{U}. Hence 2 is the least upper bound.
2. Prove that for all $n \geq 7$ we have $3^{n} \leq n$!.

We use induction on n. Base case $n=7$. LHS $=3^{7}=2187<5040=7!=$ RHS. Inductive step. Suppose $n \geq 7$ and $3^{n} \leq n!$. Then $3^{n+1} \leq(n!) .3 \leq(n!)(n+1)=$ $(n+1)$!.
3. Let $a_{n}=\frac{n+1}{n}$. Prove that $\lim _{n \rightarrow \infty} a_{n}=1$.

Let $\varepsilon>0$ and $N=1 / \varepsilon$. Then whenever $n>N$ we have

$$
\left|a_{n}-1\right|=\left|\frac{n+1}{n}-1\right|=\left|\frac{1}{n}\right|=\frac{1}{n}<\frac{1}{N}=\varepsilon .
$$

