MATH 401 INTRODUCTION TO ANALYSIS-I, SPRING TERM 2024, PROBLEMS 13

Return by Monday 15th April

- 1. Let $\exp(x) : x \mapsto \mathbb{R}$ be the function defined in (6.9).
 - (i) Prove that $\exp(x)$ is continuous at 0.
 - (ii) Prove that $\exp(x)$ is continuous at every $\xi \in \mathbb{R}$.
 - (iii) Prove that $\log(x)$ is continuous at every $\eta \in \mathbb{R}^+$.
- 2. Prove that $f : \mathbb{R} \mapsto R : f(x) = |x|$ is continuous at all $\xi \in \mathbb{R}$.

3. Define the function $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$ when $x \in \mathbb{Q}$ and f(x) = x when $x \in \mathbb{R} \setminus \mathbb{Q}$. Prove that f is continuous at exactly two points.

4. Prove that the equation $x^{3456} + x^{1234} - 1 = 0$ has a solution in [0, 1].

5. Prove that the curve $y = x^2$ intersects the cubic curve $y = x^4 - 2x^2 - x + 1$ in at least four distinct points.