MATH 401 INTRODUCTION TO ANALYSIS-I, SPRING TERM 2024, PROBLEMS 10

Return by Monday 25th March

The questions below are interconnected. In at least three places the binomial inequality

$$
(1+x)^{n} \geq 1+n x
$$

valid whenever $n \in \mathbb{N}$ and $x \geq-1$ will be useful. Throughout we define $a_{n}=$ $(1+1 / n)^{n}(n \in \mathbb{N}), b_{n}=(1-1 / n)^{-n}(n=2,3,4, \ldots)$.

1. (i) Prove that for $n \in \mathbb{N}$ we have

$$
\left(\frac{n^{2}+2 n}{n^{2}+2 n+1}\right)^{n+1} \geq \frac{n}{n+1}
$$

(ii) Prove that for $n \in \mathbb{N}$,

$$
\left(\frac{n+2}{n+1}\right)^{n+1}\left(\frac{n}{n+1}\right)^{n} \geq 1
$$

(iii) Prove that $\left\langle a_{n}\right\rangle$ is increasing, and $a_{n} \geq 2$ for every $n \in \mathbb{N}$.
2. (i) Suppose that $n \geq 2$. Prove that

$$
\left(\frac{n^{2}}{n^{2}-1}\right)^{n+1} \geq \frac{n}{n-1}
$$

(ii) Suppose that $n \geq 2$. Prove that

$$
\left(\frac{n}{n-1}\right)^{n}\left(\frac{n}{n+1}\right)^{n+1} \geq 1
$$

(iii) Prove that $\left\langle b_{n}\right\rangle$ is decreasing and $b_{n} \leq 4$.
3. (i) Suppose that $n \geq 2$. Prove that $1-1 / n \leq a_{n} / b_{n} \leq 1$.
(ii) Suppose that $n \geq 2$. Deduce that $a_{n} \leq 4, b_{n} \geq 2,\left\langle a_{n}\right\rangle$ converges, $\left\langle b_{n}\right\rangle$ converges, and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

