MATH 401 INTRODUCTION TO ANALYSIS-I, SPRING TERM 2024, PROBLEMS 9

Return by Monday 18th March

1. Let $a_{n}=(-1)^{n}$. We have seen in class that $\left\langle a_{n}\right\rangle$ diverges. Define

$$
b_{n}=\frac{a_{1}+\cdots+a_{n}}{n},
$$

the "average" of a_{n}. Prove that $\left\langle b_{n}\right\rangle$ converges.
2. Suppose that $0<k<1$ and $\left\langle x_{n}\right\rangle$ satisfies $\left|x_{n+1}\right|<k\left|x_{n}\right|$ for $n=1,2,3, \ldots$. Prove that
(i) $\left|x_{n}\right| \leq k^{n-1}\left|x_{1}\right|$,
(ii) $\lim _{n \rightarrow \infty} x_{n}=0$.
3. Suppose that the sequence $\left\langle a_{n}\right\rangle$ satisfies

$$
a_{1}=\frac{1}{3}, a_{2}=\frac{1}{2}, a_{n}=\frac{1}{2} a_{n-1}+\frac{1}{3} a_{n-2}+\frac{1}{6}(n \geq 3) .
$$

(i) Prove that $\left\langle a_{n}\right\rangle$ is increasing and bounded.
(ii) Prove that $\left\langle a_{n}\right\rangle$ converges and find the limit.

