MATH 401 INTRODUCTION TO ANALYSIS, SPRING TERM 2024, PROBLEMS 6

Return by Monday 19th February

1. Suppose that \mathcal{A} is bounded above, $\mathcal{B} \subset \mathcal{A}$ and \mathcal{B} is non-empty. Prove that $\sup \mathcal{B}$ exists and $\sup \mathcal{B} \leq \sup \mathcal{A}$.
2. Let $\mathcal{A}=\left\{x: x \in \mathbb{Q}, x^{3}<5\right\}$. Prove that $\sup \mathcal{A}$ exists. Guess the value of $\sup \mathcal{A}$.
3. Suppose that $x \geq-1$.
(i) Prove that $(1+x)^{2} \geq 1+2 x$.
(ii) Prove that $(1+x)^{3} \geq 1+3 x$.
(iii) Prove that $(1+x)^{4} \geq 1+4 x$.

Guess a general inequality for $(1+x)^{n}$ when $x \geq-1$ and $n \in \mathbb{N}$.

