MATH 401 INTRODUCTION TO ANALYSIS, SPRING SEMESTER 2024, PRACTICE FINAL EXAM

The final exam for the course will be on Monday 29th April, 4:40pm-6:30pm, 008 Mueller Lab.

The location for the final exam can be checked at

http://www.campusmaps.psu.edu/print/

1. (25 points) Find all real numbers x such that

$$||x+1| - |3x-1|| < 1.$$

2. (25 points) Let $\mathcal{A} = \left\{ \frac{3+n+n^2}{n^2} : n \in \mathbb{N} \right\}.$

- (i) Prove that $\inf \mathcal{A}$ and $\sup \mathcal{A}$ exist.
- (ii) Prove that $\inf \mathcal{A} = 1$.
- (iii) Prove that $\sup \mathcal{A} = 5$.
- (iv) Is $1 \in \mathcal{A}$?
- 3. (25 points) Prove that $5^{1/3}$ is irrational.
- 4. (25 points) (i) Prove that if $n \ge 6$, then $2^n \le (n-1)!$. (ii) Prove that $\lim_{n\to\infty} \frac{2^n}{n!} = 0.$
- 5. (25 points) Prove, using the definition of a limit, that

$$\lim_{n \to \infty} \frac{n^2 + n}{n^2 + 2n + 1} = 1$$

6. (25 points) The sequence $\langle x_n \rangle$ is defined inductively by $x_1 = 3$,

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right).$$

- (i) Prove that $x_n > 0$ for every $n \in \mathbb{N}$. (ii) Prove that $x_n^2 \ge 5$ for every $n \in \mathbb{N}$.
- (iii) Prove that $\langle x_n \rangle$ is decreasing.
- (iv) Prove that $\langle x_n \rangle$ converges and find the limit.
- 7. (25 points) State in each case the values of $x \in \mathbb{R}$ for which the series converges.

(i)
$$\sum_{n=1}^{\infty} \frac{1+|x|^n}{2+|x|^n}$$
, (ii) $\sum_{n=1}^{\infty} \frac{|x|}{(n+|x|)}$, (iii) $\sum_{n=1}^{\infty} \frac{n^2}{2^n} x^n$, (iv) $\sum_{n=1}^{\infty} \frac{x^n}{n}$.

8. (25 points) Prove that the quartic equation $x^4 - 12x^2 + x + 24 = 0$ has four real roots.