MATH 401 INTRODUCTION TO ANALYSIS, SPRING SEMESTER 2024, PRACTICE FINAL EXAM

The final exam for the course will be on Monday 29th April, 4:40pm-6:30pm, 008 Mueller Lab.

The location for the final exam can be checked at http://www.campusmaps.psu.edu/print/

1. (25 points) Find all real numbers x such that

$$
||x+1|-|3 x-1||<1
$$

2. (25 points) Let $\mathcal{A}=\left\{\frac{3+n+n^{2}}{n^{2}}: n \in \mathbb{N}\right\}$.
(i) Prove that $\inf \mathcal{A}$ and $\sup \mathcal{A}$ exist.
(ii) Prove that $\inf \mathcal{A}=1$.
(iii) Prove that $\sup \mathcal{A}=5$.
(iv) Is $1 \in \mathcal{A}$?
3. (25 points) Prove that $5^{1 / 3}$ is irrational.
4. (25 points) (i) Prove that if $n \geq 6$, then $2^{n} \leq(n-1)$!.
(ii) Prove that $\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0$.
5. (25 points) Prove, using the definition of a limit, that

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+n}{n^{2}+2 n+1}=1
$$

6. (25 points) The sequence $\left\langle x_{n}\right\rangle$ is defined inductively by $x_{1}=3$,

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{5}{x_{n}}\right) .
$$

(i) Prove that $x_{n}>0$ for every $n \in \mathbb{N}$.
(ii) Prove that $x_{n}^{2} \geq 5$ for every $n \in \mathbb{N}$.
(iii) Prove that $\left\langle x_{n}\right\rangle$ is decreasing.
(iv) Prove that $\left\langle x_{n}\right\rangle$ converges and find the limit.
7. (25 points) State in each case the values of $x \in \mathbb{R}$ for which the series converges.
(i) $\quad \sum_{n=1}^{\infty} \frac{1+|x|^{n}}{2+|x|^{n}}$,
(ii) $\quad \sum_{n=1}^{\infty} \frac{|x|}{(n+|x|)}$,
(iii) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}} x^{n}$,
(iv) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$.
8. (25 points) Prove that the quartic equation $x^{4}-12 x^{2}+x+24=0$ has four real roots.

