Math 401, Spring Term 2024, Model Solutions to Practice Exam 3

## Note: Exam 3 is on Wednesday 10th April, 1:25 in Room 011 Huck.

1. Decide the convergence of the each of the following series, in each case proving your assertion.

$$
\begin{array}{ccc}
\text { (i) } \sum_{n=1}^{\infty} \frac{3}{n^{3}+2} & \text { (ii) } \sum_{n=1}^{\infty} \frac{4}{3 n+2} & \text { (iii) } \sum_{n=1}^{\infty} \frac{(n!)^{3}}{(3 n)!}(26)^{n} \\
\text { (iv) } \sum_{n=1}^{\infty} \frac{(n!)^{3}}{(3 n)!}(28)^{n} & \text { (v) } \sum_{n=1}^{\infty}(-1)^{n-1} n^{-1 / 4} & \text { (vi) } \sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)(-1)^{n} .
\end{array}
$$

(i) $\frac{3}{n^{3}+2}<\frac{3}{n^{2}}$ so converges by comparison. (ii) $\frac{4}{3 n+2}>\frac{4 / 5}{n}$ so diverges by comparison. (iii) Converges by ratio test. (iv) Diverges by ratio test. (v) Converges by Leibnitz. (vi) Diverges since general term does not have limit 0 .
2. Prove, using only the definition of limit, that $\lim _{x \rightarrow 1}(5 x-3)=2$.

Let $\varepsilon>0$ and choose $\delta-\varepsilon / 5$. Then, whenever $0<|x-1|<\delta$ we have $|(5 x-3)-2|=$ $5|x-1|<5 \delta=\varepsilon$.
3. Evaluate the following limits.

$$
\text { (i) } \lim _{x \rightarrow 3} \frac{x^{3}+5 x+7}{x^{4}+6 x^{2}+8} \quad \text { (ii) } \lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x^{2}-2 x-3} \text {. }
$$

(i) $\frac{49}{143}$, (ii) When $x \neq 3$,

$$
\frac{x^{2}-4 x+3}{x^{2}-2 x-3}=\frac{x-1}{x+1}
$$

so limit is $\frac{1}{2}$.
4. Define $f:(-1,1) \mapsto \mathbb{R}: f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$. Prove that if $\xi \in(-1,1)$, then

$$
\lim _{x \rightarrow \xi} f(x)=f(\xi)
$$

Let $\xi \in(-1,1)$ and $\varepsilon>0$. Choose $\delta=\frac{\varepsilon(1-|\xi|)}{1+\varepsilon}$. Note that

$$
|\xi|+\delta=|\xi|+\frac{\varepsilon-\varepsilon|\xi|}{1+\varepsilon}=\frac{|\xi|+\varepsilon}{1+\varepsilon}<\frac{1+\varepsilon}{1+\varepsilon}=1
$$

Then, whenever $0<|x-\xi|<\delta$ we have

$$
\begin{gathered}
f(x)-f(\xi)=\sum_{n=1}^{\infty} \frac{(x-\xi)\left(x^{n-1}+x^{n-2} \xi+\cdots+\xi^{n-1}\right)}{n} \\
|f(x)-f(\xi)| \leq|x-\xi| \sum_{n=1}^{\infty} \frac{n(|\xi|+\delta)^{n-1}}{n}=\frac{|x-\xi|}{1-|\xi|-\delta}<\frac{\delta}{1-|\xi|-\delta}=\varepsilon
\end{gathered}
$$

