Math 401, Spring Term 2023, Model Solutions to Practice Exam 2
Note: Exam 2 is on Wednesday 13th March, 1:25 in Room 011 Huck.

1. Let \mathcal{A}, \mathcal{B} be non-empty sets of real numbers which are bounded above, and let $\mathcal{A}+2 \mathcal{B}$ denote the set of numbers of the form $a+2 b$ with $a \in \mathcal{A}$ and $b \in \mathcal{B}$. (i) Prove that $\sup (\mathcal{A}+2 \mathcal{B})$ exists. (ii) Prove that $\sup (\mathcal{A}+2 \mathcal{B}) \leq \sup \mathcal{A}+2 \sup \mathcal{B}$. (iii) Let $\delta>0$. Prove that there are $a \in \mathcal{A}$ and $b \in \mathcal{B}$ such that $a>\sup \mathcal{A}-\delta$ and $b>\sup \mathcal{B}-\delta$. (iv) Deduce that $\sup (\mathcal{A}+2 \mathcal{B})=\sup \mathcal{A}+2 \sup B$.
(i) \mathcal{A} and \mathcal{B} are non-empty, so there exists an $a \in \mathcal{A}$ and a b in \mathcal{B}. Hence $a+2 b \in \mathcal{A}+2 \mathcal{B}$ so $\mathcal{A}+2 \mathcal{B}$ is non-empty. Moreover every $a \in \mathcal{A}$ satisfies $a \leq \sup \mathcal{A}$ and every $b \in \mathcal{B}$ satisfies $b \leq \sup \mathcal{B}$, and every element c of $\mathcal{A}+2 \mathcal{B}$ is of this form. Hence $c \leq \sup A+\sup B\left(^{*}\right)$. Thus $\mathcal{A}+2 \mathcal{B}$ is non-empty and bounded above, so by the Continuum Property $\sup (\mathcal{A}+2 \mathcal{B})$ exists. (ii) Moreover, by $\left(^{*}\right)$, $\sup A+2 \sup B$ is an upper bound for $\mathcal{A}+2 \mathcal{B}$. (iii) If we had $a \leq \sup \mathcal{A}-\delta$ for every $a \in \mathcal{A}$, then $\sup \mathcal{A}$ would not be the least upper bound for \mathcal{A}. Hence there is an element a of \mathcal{A} with $a>\sup \mathcal{A}-\delta$. Likewise there is a $b \in \mathcal{B}$ with $b>\sup \mathcal{B}-\delta$. (iv) By (ii) $\sup (\mathcal{A}+2 \mathcal{B}) \leq \sup \mathcal{A}+2 \sup \mathcal{B}$. We argue by contradiction. Suppose we have strict inequality. Let $\delta=\frac{1}{3}(\sup \mathcal{A}+2 \sup \mathcal{B}-\sup (\mathcal{A}+2 \mathcal{B}))$. By (iii) there are $a \in \mathcal{A}, b \in \mathcal{B}$ such that $a+2 b>\sup \mathcal{A}+2 \sup \mathcal{B}-3 \delta$. But by the definition of δ the RHS is $\sup (\mathcal{A}+2 \mathcal{B})$ and this contradicts the fact that $a+2 b \leq \sup (\mathcal{A}+\mathcal{B})$.
2. Let $\mathcal{A}=\left\{2+\frac{3}{\sqrt{n}}: n \in \mathbb{N}\right\}$. Prove that $\inf \mathcal{A}$ exists and $\inf \mathcal{A}=2$.

Proof. We have $5=2+3 / \sqrt{1} \in \mathcal{A}$, so $\mathcal{A} \neq \emptyset$. We also have $2+3 / \sqrt{n}>2$ for every $n \in \mathbb{N}$. Thus \mathcal{A} is bounded below by 2 . We complete the proof by showing that there is no larger lower bound. We argue by contradiction. Suppose that $a>2$ is a lower bound. By the Archimedean property there is an $n \in \mathbb{N}$ such that $n>9(a-2)^{-2}$. Hence $(a-2) \sqrt{n}>3, a>2+3 / \sqrt{n}$ contradicting the assumption on a.
3. Prove, using the definition of a limit, that $\lim _{n \rightarrow \infty} \frac{n^{3}+n}{n^{3}+n+7}=1$.

Proof. Let $\varepsilon>0$. Choose $N=(7 / \varepsilon)^{1 / 3}$. Then, whenever $n>N$ we have $\left|\frac{n^{3}+n}{n^{3}+n+7}-1\right|=$ $\frac{7}{n^{3}+n+7}<\frac{7}{n^{3}}<\frac{7}{N^{3}}=\varepsilon$.
4. Suppose that $\lim _{n \rightarrow \infty} a_{n}=l$ and $l>2$. Prove that there is an N such that whenever $n>N$ we have $a_{n}>2$.

Proof. Let $\varepsilon=l-2$. Choose N so that whenever $n>N$ we have $\left|a_{n}-l\right|<\varepsilon$. Then $-\varepsilon<a_{n}-l$, whence $2=l-\varepsilon<a_{n}$ as required.

