MATH 401, SPRING TERM 2024, MODEL SOLUTIONS TO PRACTICE EXAM 1

Note that the first exam is on Wednesday 7th February, at 1:25 in Room 011 Huck Life Sciences.

1. Differentiate with respect to x. (i) $\left(2 x^{3}-1\right) \sin x$, (ii) $\frac{7 x-4}{\ln x}$
(i) $6 x^{2} \sin x+\left(2 x^{3}-1\right) \cos x$. (ii) $\frac{7}{\ln x}-\frac{7 x-4}{x(\ln x)^{2}}$.
2. The function f is defined by $f(x)=\frac{4}{x-2}-\frac{1}{x+1}$. (i) Show that $f^{\prime}(x)=$ $-\frac{3 x(x+4)}{(x-2)^{2}(x+1)^{2}}$ and find the maxima and minima of f. (ii) Sketch the graph of f.
(i) $f^{\prime}(x)=\frac{-4}{(x-2)^{2}}+\frac{1}{(x+1)^{2}}=\frac{-4(x+1)^{2}+(x-2)^{2}}{(x-2)^{2}(x+1)^{2}}=\frac{-3 x^{2}-12 x}{(x-2)^{2}(x+1)^{2}} . f^{\prime}(x)=0$ when $x=0$ or $x=-4 . f^{\prime \prime}(x)=\frac{8}{(x-2)^{3}}-\frac{2}{(x+1)^{3}}$ so $f^{\prime \prime}(0)=-3<0$ and $f^{\prime \prime}(-4)=\frac{1}{27}>0$. Thus 0 gives a max and -4 a min. (ii) See class.
3. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be sets. Prove that $(\mathcal{A} \cap \mathcal{B}) \cup \mathcal{C}=(\mathcal{A} \cup \mathcal{C}) \cap(\mathcal{B} \cup \mathcal{C})$.

A	B	C	$A \cap B$	$(A \cap B) \cup C$	$A \cup C$	$B \cup C$	$(A \cup C) \cap(B \cup C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	0	1	0	0
0	1	1	0	1	1	1	1
0	1	0	0	0	0	1	0
0	0	1	0	1	1	1	1
0	0	0	0	0	0	0	0

Summary of order axioms from class (slightly different from the textbook): There is a relation " $<$ " which satisfies the following axioms. a, b, c denote real numbers.

O1. Exactly one of $a<b, a=b, b<a$ holds.
O2. If $a<b$ and $b<c$, then $a<c$.
O3. If $a<b$, then $a+c<b+c$ for all c.
O4. If $a<b$ and $0<c$, then $a c<b c$.
The expression $a>b$ means $b<a$. We also use $a \leq b$ to mean "either $a<b$ or $a=b "$.
4. Suppose that a, b, c are three real numbers and $0<a b c$. Prove that at least one of a, b, c is positive.

We argue by contradiction. Suppose each of a, b, c is negative or 0 . If at least one of them is 0 , then at once from the arithmetic axioms we have $a b c=0$ giving a contradiction. If none of a, b, c is 0 then they will all be negative, i.e. $a<0, b<0$ and $c<0$. By Theorem 2.1 we have $0=0 . b<a . b$. Then by Theorem 2.1 again we have $a b c=a b . c<a b .0=0$ contradicting the hypothesis.

