MATH 401 INTRODUCTION TO ANALYSIS-I, SPRING TERM 2024, PRACTICE EXAM 3

Note that the third exam is on Wednesday 10th April, at 1:25 in Room 011 Huck.

1. Decide the convergence of the each of the following series, in each case stating which tests you use.

(i)
$$\sum_{n=1}^{\infty} \frac{3}{n^3 + 2}$$
 (ii) $\sum_{n=1}^{\infty} \frac{4}{3n + 2}$ (iii) $\sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)!} (26)^n$
(iv) $\sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)!} (28)^n$ (v) $\sum_{n=1}^{\infty} (-1)^{n-1} n^{-1/4}$ (vi) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) (-1)^n$.

2. Prove, using only the definition of limit, that $\lim_{x\to 1} (5x-3) = 2$.

3. Evaluate the following limits, justifying your conclusion.

(i)
$$\lim_{x \to 3} \frac{x^3 + 5x + 7}{x^4 + 6x^2 + 8}$$
 (ii) $\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}$.

4. Define $f: (-1,1) \mapsto \mathbb{R}: f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$. Prove that if $\xi \in (-1,1)$, then $\lim_{x \to \xi} f(x) = f(\xi).$