MATH 401 INTRODUCTION TO ANALYSIS-I, SPRING TERM 2024, PRACTICE EXAM 3

Note that the third exam is on Wednesday 10th April, at 1:25 in Room 011 Huck.

1. Decide the convergence of the each of the following series, in each case stating which tests you use.

> (i) $\sum_{n=1}^{\infty} \frac{3}{n^{3}+2}$
> (ii) $\sum_{n=1}^{\infty} \frac{4}{3 n+2}$
> (iii) $\sum_{n=1}^{\infty} \frac{(n!)^{3}}{(3 n)!}(26)^{n}$
> (iv) $\sum_{n=1}^{\infty} \frac{(n!)^{3}}{(3 n)!}(28)^{n}$
> (v) $\sum_{n=1}^{\infty}(-1)^{n-1} n^{-1 / 4}$
> (vi) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)(-1)^{n}$.
2. Prove, using only the definition of limit, that $\lim _{x \rightarrow 1}(5 x-3)=2$.
3. Evaluate the following limits, justifying your conclusion.

$$
\text { (i) } \lim _{x \rightarrow 3} \frac{x^{3}+5 x+7}{x^{4}+6 x^{2}+8} \quad \text { (ii) } \lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x^{2}-2 x-3} \text {. }
$$

4. Define $f:(-1,1) \mapsto \mathbb{R}: f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$. Prove that if $\xi \in(-1,1)$, then

$$
\lim _{x \rightarrow \xi} f(x)=f(\xi)
$$

