MATH 401 INTRODUCTION TO ANALYSIS-I, SPRING TERM 2024, PRACTICE EXAM 2

Note that the second exam is on Wednesday 13th March, at 1:25 in Room 011 Huck.

1. Let \mathcal{A}, \mathcal{B} be non-empty sets of real numbers which are bounded above, and let $\mathcal{A}+2 \mathcal{B}$ denote the set of numbers of the form $a+2 b$ with $a \in \mathcal{A}$ and $b \in \mathcal{B}$.
(i) Prove that $\sup (\mathcal{A}+2 \mathcal{B})$ exists.
(ii) Prove that $\sup (\mathcal{A}+2 \mathcal{B}) \leq \sup \mathcal{A}+2 \sup \mathcal{B}$.
(iii) Let $\delta>0$. Prove that there are $a \in \mathcal{A}$ and $b \in \mathcal{B}$ such that $a>\sup \mathcal{A}-\delta$ and $b>\sup \mathcal{B}-\delta$.
(iv) Deduce that $\sup (\mathcal{A}+2 \mathcal{B})=\sup \mathcal{A}+2 \sup B$.
2. Let $\mathcal{A}=\left\{2+\frac{3}{\sqrt{n}}: n \in \mathbb{N}\right\}$. Prove that $\inf \mathcal{A}$ exists and $\inf \mathcal{A}=2$.
3. Prove, using only the definition of a limit, that

$$
\lim _{n \rightarrow \infty} \frac{n^{3}+n}{n^{3}+n+7}=1
$$

4. Suppose that $\lim _{n \rightarrow \infty} a_{n}=l$ and $l>2$. Prove that there is an N such that whenever $n>N$ we have $a_{n}>2$.
