MATH 401 INTRODUCTION TO ANALYSIS-I, SPRING TERM 2024, PRACTICE EXAM 1

Note that the first exam is on Wednesday 7th February, at 1:25 in Room 011 Huck Life Sciences.

1. Differentiate with respect to x.
(i) $\left(2 x^{3}-1\right) \sin x$
(ii) $\frac{7 x-4}{\ln x}$
2. The function f is defined by $f(x)=\frac{4}{x-2}-\frac{1}{x+1}$. (i) Show that $f^{\prime}(x)=$ $-\frac{3 x(x+4)}{(x-2)^{2}(x+1)^{2}}$ and find the maxima and minima of f. (ii) Sketch the graph of f.
3. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be sets. Prove that $(\mathcal{A} \cap \mathcal{B}) \cup \mathcal{C}=(\mathcal{A} \cup \mathcal{C}) \cap(\mathcal{B} \cup \mathcal{C})$.

Summary of order axioms from class (slightly different from the textbook): There is a relation " $<$ " which satisfies the following axioms. a, b, c denote real numbers.

O1. Exactly one of $a<b, a=b, b<a$ holds.
O2. If $a<b$ and $b<c$, then $a<c$.
O3. If $a<b$, then $a+c<b+c$ for all c.
O4. If $a<b$ and $0<c$, then $a c<b c$.
The expression $a>b$ means $b<a$. We also use $a \leq b$ to mean "either $a<b$ or $a=b "$ and $a \geq b$ to mean $b \leq a$.
4. Suppose that a, b, c are three real numbers and $0<a b c$. Prove that at least one of a, b, c is positive.

