Name

1. For which t the matrix $\begin{pmatrix} 4 & t \\ t & 1 \end{pmatrix}$ is positive definite?

Solution. For t such that $4 > 0, 4 - t^2 > 0$, i.e., -2 < t < 2.

2. Determine the definiteness for the quadratic form $(x + y + z)^2 + xy + yz + xz$.

Solution. The matrix is
$$\begin{pmatrix} 1 & 3/2 & 3/2 \\ 3/2 & 1 & 3/2 \\ 3/2 & 3/2 & 1 \end{pmatrix}$$
. The eigenvalues are $-1/2, -1/2, 4$. The dratic form is indefinite

quadratic form is indefinite.

3. Find the characteristic polynomial and eigenvalues of the 3×3 matrix with all entries equal to 10^{-10} .

Solution. The eigenvalues are $(0, 0, 3 \cdot 10^{-10})$ with eigenvectors $(1, -1, 0, 0,)^T, (0, 1, -1, 0,)^T, (1, 1, 1, 1)^T$. Remark: For any nonzero number c, eigenvalues of cA = c (eigenvalues of A) and eigenvectors of cA = eigenvectors of A.

4. Find SVD for the matrix $A = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$. Solution. $A = U \begin{pmatrix} \sqrt{14}\\ 0\\ 0 \end{pmatrix}$ with an orthogonal matrix U. The first row of U is $A/\sqrt{14}$. It is easy to find two linearly independent vectors orthogonal to A, e.g., $u = \begin{pmatrix} 2\\ -1\\ 0 \end{pmatrix}$, $v = \begin{pmatrix} 3\\ 0\\ -1 \end{pmatrix}$. The vector v - 1.2u is orthogonal to both A and u. The vectors $A/\sqrt{14}$, $u/\sqrt{5}$, $(v - 1.2u)/\sqrt{70}$ form an orthonormal basis. So we can take them as the columns of U.

5. Compute $(A - 1_3)(A - 2 \cdot 1_3)(A - 3 \cdot 1_3)$ for the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{pmatrix}$.

Solution. We know that $A = CBC^{-1}$ for $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ (diagonal matrix). For

any polynomial p(x) we have $p(A) = Cp(B)C^{-1}$. For our polynomial p(x) = (x-1)(x-2)(x-3), we have p(B) = 0. So p(A) = 0.

Remark: Similarly, any matrix with distinct eigenvalues satisfies its characteristic equation. By additional work, we can show that every matrix satisfies its characteristic equation.