Math 484.2  October 23, 2003.   Name:________L. Vaserstein_______________

Midterm 2,  5 problems, 15 points each.

Solve linear programs where all  xi >= 0:

1.
-2 x2 3 -x3
1 2 3 4 = x1
5 6 -7 8 =-x4
0 1 2 3 -> min

combine two columns with constants on top  together  and multiply a column  and a row by -1.
standard  feasible tableau:
x2 x3 1
2 -4* 7 = x1
-6 8 31 = x4
1 -3 6 -> min
pivot step according to Phase 2 of simplex method
 x2 x1 1
1/2 -1/4 7/4 = x3
-2* -2 45 = x4
-1/2 3/4 3/4 -> min
pivot step according to Phase 2 of simplex method
 x4 x1 1
-1/4 -3/4 13 = x3
-1/2 -1 45/2 = x2
1/4 5/4  -21/2 -> min
The tableau is optimal, so  min = -21/2=-10.5 at  x1=0, x2= 45/2, x3=13,  x4= 0.

2.
-2 -x2 -3 -x1
1 2 3 4 = x1
5 6 7 8 = x4
0 1 2 3 -> min

combine two columns with constants on top  together  and multiply a column by -1
x2 -x1 1
-2* 4 -11 = x1
-6 8 -31 x4
-1 3 -6 -> min
pivot step
x1 -x1 1
-1/2 2 -11/2 = x2
3 -4 2 = x4
1/2 1 -1/2 -> min
combine the first two columns.  standard tableau:
 
x1 1
-5/2 -11/2 = x2
7 2 =x4
-1/2 -1/2 -> min
 x2-row is bad,  so the program is infeasible.

3.
2 x2 3 -x3
1 2 3 4 = x1
5 6 7 8 =- x1
0 1 2 3 -> max

combine two columns with constants on top  together  and multiply a column by -1.
x2 x3 1
2 -4 11 = x1
6 -8 31 = -x1
1 -3 6 -> max
add the first row from the second row and multiply the third row by -1
x2 x3 1
2 -4 11 = x1
8 -12* 42 = 0
-1 3 -6 -> min
pivot on -12 and drop the second column to obtain standard tableau
x2 1
-2/3 -3 = x1
2/3 7/2 = x3
1 9/2 -> min
The  x1-row is bad, so the program is infeasible.

4.
x3 x2 1 -x3
1 2 3 4 = x1
5 6 7 0 =x4
0 1 2 3 -> min

combine the first and the last column  to obtain standard tableau
x3 x2 1
-3* 2 3 = x1
5 6 7 =x4
-3 1 2 -> min
pivot step according to Phase 2 of simplex method
  x2 1

2/3 1  

28/3 12  

-1
-> min
(irrelevant entries are not shown). Now  x2-column is bad,  so the program is unbounded.

5.
0 x2 -1 -x3
1 2 3 4 = -x1
5 6 7 8 = x4
0 1 2 3 -> min

drop the first column, switch   columns, and multiply a column and a row by -1 to obtain standard tableau
x2 x3 1
-2  4  3 = x1
6* -8 -7 = x4
1 -3 -2 -> min
 pivot step according to Phase 1 of simplex method
x4 x3 1

 4/3  2/3 = x1
1/6 4/3 7/6 = x2

-5/3
-> min
 This is a feasible tableau with  x3-column bad, so the program is unbounded.