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Abstract

In this paper, we consider a model of social learning in a population of myopic,
memoryless agents. The agents are placed on integer points on an infinite
line. Each period, they perform experiments with one of two technologies,
then each observes the outcomes and technology choices of the two adjacent
agents as well as his own outcome. Two learning rules are considered; it is
shown that under the first, where an agent changes his technology only if he
has had a failure (a bad outcome), the society converges with probability 1
to the better technology. In the other, where agents switch on the basis of
the neighbourhood averages, convergence occurs if the better technology is
sufficiently better. The results provide a surprisingly optimistic conclusion
about the diffusion of the better technology through imitation, even under
the assumption of extremely boundedly rational agents.



1 Introduction

This paper considers a problem of social learning with two distinctive fea-
tures. First, the agents we model are minimally rational; they do not look
ahead and do not do Bayesian revision of probabilities, nor do they remem-
ber outcomes from the past. Second, they observe only local information-the
outcomes of their own experiments in each period and those of their immedi-
ate neighbours and they have the ability to compare averages. The problem
we seek to examine is whether, despite these disadvantages, players can all
learn to use the superior one of two available technologies.

Similar issues have recently been considered in models of cultural evo-
lution (Bisin and Verdier(2001) for example) and in models of learning by
boundedly rational agents (such as the paper of Ellison and Fudenberg (1995)
on word-of-mouth learning, which is discussed at length later on, or of Eshel,
Samuelson and Shaked (1998).) Cultural evolution stresses the role of prop-
agation of cultural traits by horizontal transmission or imitation. Here the
larger the proportion of individuals with a particular trait, the more likely
the trait is to spread, thus creating a pressure towards conformity. The Es-
hel, Samuelson and Shaked paper adds another dimension to this problem,
because individuals change their behaviour not just to conform to the ma-
jority view but if they see alternative strategies yielding a greater payoff on
average among other agents they are able to observe. Their paper considers
a finite number of agents placed in a circle, with each agent able to observe
his or her neighbours; the authors obtain a surprisingly optimistic result on
the survival of altruism. Of course, an individual altruist might be doing
very poorly, but he or she will not change because her neighbouring altruists
are doing very well.

We consider in this paper a problem of diffusion of technology, where one
technology is better than the other and agents imitate better technologies
among their neighbours. This could be interpreted as a model of cultural
evolution, since it is based on imitation. As stated earlier, we impose minimal
rationality requirements on our agents, so one might regard them as proto-
humans or automata rather than actual humans.

Specifically, agents are distributed at integer points on the line. Suppose
there are two available technologies, B(lue) and R(ed). Each agent on the
(infinite in both directions) line is randomly assigned a technology; that is,
each integer site on the line is B or R with a strictly positive probability
(for example 1/2). Each agent, labelled henceforth as agent i, i = .... —



3,—2,—1,0,1,2,3..., uses his assigned technology in each period to produce
an output, which could either be 1(Success) or 0(Failure).! The R technology
is better than the B technology in the sense that pp < pgr, where pg and pgr
are the probabilities of success with the blue and red technologies respectively.

In any period t, the agents simultaneously and independently perform
the experiment with their assigned technologies. Each agent observes his
own outcome and the outcomes of his two nearest neighbours. Agents are
automata but can learn from one another according to one of the two learning
rules to be described. In rule L, the agent never changes technology if his
own outcome is a success. If his outcome in a given period t is a failure, he
considers himself (site i) as well as sites (¢ — 1,7 + 1). If he is using B and
the agents using R have a greater proportion of successes in ¢t than those
using B, he switches next period to using R. The process of switching from
R to B is analogous.? In rule L,, agent i always looks around, calculates
whether the other technology has a higher proportion of successes among
agents {¢ — 1,4,7 4+ 1} and switches to that technology next period, if this
is in fact the case. The object of this paper is to investigate the question of
whether the better technology diffuses through the population, even though
agents only consider current results and do not behave optimally. (This
problem, with discounting, is a two-armed bandit problem, where optimal
behaviour has been much studied in the literature.)

The main result we obtain is as follows: With rule L;, from any initial
configuration that has positive probability of occurrence, the better technol-
ogy diffuses across the entire population with probability 1. With rule L,
we have only been able to prove a weaker result, namely that the better
technology diffuses with probability 1 from any positive probability initial
configuration, if pg is sufficiently greater than pp (in a precise way).

While we do not claim that this exactly models some real-world phe-
nomenon in the economy, we argue that the model has aspects that reflect
the important questions raised earlier in the introduction. Individuals do
learn from their neighbours and better ways of doing things (or “technolo-

'If the payoffs are real-valued, as in some of the other papers in the literature, one
could think of “Success” as being a payoff greater than some arbitrary aspiration level,
and “Failure” as being a payoff below this level. The conditions on the probabilities of
success and failure imposed here can then be translated into conditions on the probability
distribution of output for R and B; for learning rule Lq, stochastic dominance of R over
B is sufficient to generate the results.

2This avoids the problem of the agent not giving any special attention to his own payoff.



gies”) do spread as a result. It is by no means clear in advance whether
the better technology always prevails, whether either could prevail (as is the
case with a finite number of agents) or whether the technologies co-exist (as
happens frequently in developing countries).

While we have not come across this specific model anywhere, there are
related problems that have been considered in at least three different fields,
namely physics, probability and the analysis of learning models in economics.
In physics, the problem would formally fall in the category of probabilistic
cellular automata. A paper by Bhargava, Kumar and Mukherjee (1993) in
fact describes a model of new-product diffusion in these terms. (The authors
are physicists.) In their model, there is one innovation and each agent is in
one of two states—an adopter or non-adopter. Once someone has adopted, he
or she never switches to becoming a non-adopter. Any non-adopter with an
adopter as a neighbour (the neighbourhood is a two-dimensional chessboard
type with eight neighbours), becomes an adopter with probability 1 — z,
where x; — 1 as t — 00. The authors simulate a 100x100 grid with different
seed values of adopters and find, in their simulations, that the initial value
of x is crucial in determining the rate at which adoption takes place (they
specify in advance how z increases with time) and that the initial number of
adopters ceases to have an effect beyond a certain level. It is clear that our
model is somewhat different even though the question addressed is similar.
Mehta and Luck (1999) consider the statistical mechanical properties of a
two-dimensional system motivated, in part, by conversations we have had on
the model of this paper, though they incorporate several differences, including
a “biasing” parameter that specifies how quickly agents using each technology
(in our language) are ready to change; changes of technology also do not
happen every period, another parameter is the extent of inertia for each
type. Their analysis is done using an approximation technique called “pair
approximation” and by simulation, and their results predict co-existence or
clustering depending on the different parameter values. Our model is simpler,
does not involve biasing parameters and we obtain exact results.

The analogous literature in probability theory is both extensive and deep
and we will not survey it here, except to state that the usual modelling
framework in this literature has the technology changing as a result of the
proportion of neighbours using the other technology rather than as the pro-
portion of successes (see,for example, the voter model, where either technol-
ogy can prevail with probability 1). While most of the work in “interacting
particle systems” is in continuous time, Durrett (1988) also discusses some
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discrete-time models.

The probabilistic techniques we use are considerably less sophisticated
than the ones employed in the literature above, though we do use the method
of coupling that is also common in probability work. (See, for example,
Chapter 14 in Aldous and Fill (2002) or Thorisson (2001) or Ross(1996).)

As alluded to earlier, there is a considerable literature in economics both
on diffusion of innovations and on learning from others. In the latter cat-
egory are the papers of Anderlini and Ianni (1996) and (1997), Bala and
Goyal (1998), Banerjee and Fudenberg (2000), Ellison (1993), Ellison and
Fudenberg (1993), Ellison and Fudenberg (1995) and Morris (2000). (This
is by no means an exhaustive list.) We discuss some of these papers in more
detail below.

Binmore and Samuelson (1997) is representative of a number of papers
that use “aspiration-based” switching of strategies.This paper has the follow-
ing ”learning” model. A player gets a ”learn-draw” at some point in time and
only that player has an opportunity to learn (this is sometimes referred to
as asynchronous updating ). He/she then compares his realised payoff with
his current strategy to an aspiration level (this is analogous to a success in
our learning rule L;). If it is greater he does nothing. If it is less than the
aspiration level, he chooses a random player from the (finite) population and
imitates him with probability 1-); with probability A, he chooses the strat-
egy that the randomly chosen player is not playing. Our paper differs in the
following respects: (1) In our paper, updating occurs for everyone every pe-
riod. (2) The population is infinite. (3) The probability that the neighbour
is imitated is not exogenous in our model; it depends on the performance
of the two strategies in the neighbourhood of the agent who is considering
changing.

Bala and Goyal (1998), whose paper has a very similar title to ours, in
fact have a very different model. In their model, agents located at nodes in
an infinite, connected graph choose an action with uncertain payoff. Though
they are not completely rational, being myopic maximisers, they are rational
learners in the sense of using Bayesian updating every period, so that all
past experience is in fact taken into account. Our agents are memoryless
and follow heuristics rather than maximising posterior expected utility. Bala
and Goyal show convergence to the optimal action, given the updating rules
and connectedness, for sufficiently dispersed prior probabilities. Of course,
this assumption has no counterpart in our (non-Bayesian) model.

The paper closest to ours in conception, though very different in execu-

4



tion, is Ellison and Fudenberg (1995). They consider a continuum of identical
players, each of whom chooses in each period the technology he or she will use
in that period. The payoff of each technology is subject to stochastic shocks.
A fraction of players keep using the same technology in the next period, but
the complementary fraction “hears” of the experience of N randomly drawn
other players and each member of this f(r)action switches to the technology
with the higher average payoff, so long as both technologies are present in
the sample. (Except for the agents that do not change, this learning rule is
like our Lsy.) The state variable in this model is the aggregate proportion of
individuals using the better technology. Ellison and Fudenberg study a local
linearisation of this dynamical system and, in their theorem 2, characterise
the conditions under which efficient social learning (of the better technol-
ogy) will take place. In contrast to their paper, word-of-mouth in our paper
is local (there is an explicit neighbourhood structure). The difference this
causes might be thought of by interpreting their paper as one in which each
player has N neighbours, whenever it is that player’s turn to move (learn)
and the neighbours change independently to a non-overlapping set of NV each
time the player moves. Thus while, if the player concerned learns, his or her
choice depends on the neighbours, the choices made by the neighbours do
not depend on his. (This is assuming the difference in payoffs of the tech-
nologies is constant. Ellison and Fudenberg actually vary this as well, with
a “shock” common to all players, so agents’ choices are in fact correlated.)
Our results are therefore somewhat different from theirs, and we are able to
look explicitly at the dynamics of the total configuration (an agent is at each
site, and a configuration consists of a technology for each site), rather than
at the aggregate proportion.

In an earlier, related paper, Ellison and Fudenberg (1993) discuss social
learning. In the first part of their paper, which corresponds broadly to ours,
the same technology is better for everyone. There is an initial proportion of
people using this technology, with everyone being concentrated at one site.
Players in each period observe the payoffs of all available technologies in
the previous period. Only an exogenously given proportion a are ready to
learn, that is to change the technology being used to the one with higher
payoff in the previous period. While Ellison and Fudenberg show that this
learning process need not converge to the best technology, a sufficient de-
gree of “popularity weighting” will lead to such a convergence. Popularity
weighting is a reflection of past experience with each technology, since it
uses the information of how popular a given technology is in addition to its



payoff the previous period. Popularity weighting plays no role in our paper;
agents know only their neighbours’ realisations in each period. (In Ellison
and Fudenberg, realisations are perfectly correlated so one can interpret their
paper in our terms as each player always having access to the payoffs of both
technologies in the previous period.)

The other papers are somewhat less related in conception, since they are
concerned either with rational learning or with co-ordination games; how-
ever the papers of Anderlini and Ianni, Ellison and Morris do consider local
interaction though in settings different from that of this paper. Our results
cannot therefore be directly compared to theirs, except in the method of
analysis. We use random walk and coupling arguments, which are somewhat
simpler than the ones in these other papers.

2 Technology Diffusion under Rule [,

In this section, we show that if initially an agent at an integer site is inde-
pendently assigned R with a strictly positive probability, and if R is more
likely to yield a success than B does, then under rule L, every agent will use
R eventually with probability 1.

Our approach to establish the convergence result can be outlined as fol-
lows. First we consider a special configuration, denoted by Config-[¢y, o],
ly < 719, which initially has a single segment of consecutive red agents
located at the integer points of interval [{y,ro]. We show that, with a
strictly positive probability, Config-[{y, o] will become all red before it is
either absorbed by all blue or becomes a single red site. We then repeat-
edly couple the original process with a sequence of such configurations,
Config-[¢), ¢} + 1], 7 = 1,2,..., so that as soon as one of those configura-
tions is absorbed by all red, which occurs almost surely, the original process
is also absorbed by all red.

The details are given in the following two subsections.

2.1 Config—|[{y, ]

This section studies a special configuration that initially has a single segment
of i consecutive red sites and all other sites blue (the locations of those red
sites are immaterial since the line extends to infinity in both directions). We
show that such a configuration has the property that before it becomes either



all red or all blue, the two absorbing states, it always contains a single seg-
ment of consecutive red sites. We then show that for ¢ > 2, the configuration
has a positive probability to become all red.

For convenience, we call a site a R-site (a B-site) in period ¢ if the agent
located at that site uses R (B). A segment of consecutive R-sites (B-sites)
will be called a R-interval (a B-interval). We say a configuration in period ¢
is in state x; = [€y, 4], € < ry, if the entire line is blue except the R-interval
[0y, 1¢]. Let |z;| = ry — €, + 1 be the cardinality of z;, which is understood
as the number of R-sites in interval [¢;, 7], ¢ = 0,1,.... We also say the
configuration is in state B (R) if the entire line is blue (red). Here and in
the sequel, the configuration with initial state [€y, ro] is called Config-[€o, ro].

Under learning rule Ly, if the outcome of agent ¢’s chosen technology in
period t is a success, then he uses the same technology in period ¢+ 1. If the
outcome of his experiment in period t is a failure, and if at least one of his
neighboring sites using the alternative technology is a success, then agent ¢
switches to the alternative technology in period t 4+ 1. More specifically, the
switching probabilities of the central agent ¢ under rule L; are as follows:

1. BBB or RRR: No switch
2. BBR or RBB: Switch with probability (1 — pg)pg;
3. RRB or BRR: Switch with probability (1 — pr)ps;
(
(

4. BRB: Switch with probability (1 — pg)(1 — (1 — pg)?);
5. RBR: Switch with probability (1 — pg)(1 — (

It is worth noting that, if the neighbours of the central agents use different
technologies, such as in cases (2) and (3), then the central agent, say B in
BBR, only needs to learn from his right neighbouring site R, and switches
to R in period t 4+ 1 if B is a failure and R is a success in period t.

Our first lemma shows that under rule L;, Config-[¢y, o], a configuration
with initial state Xo = [y, 7], 00 < £y < 19 < 00, in period t must be either
in state B or in some random state X; = [Ly, Ry], Ly < Ry, t =0,1,.... In
other words, a configuration starting with a single R-interval always consists
of a single R-interval as time evolves until absorption by B, if that event ever
occurs.



Lemma 1 If ¢y < rg, then under rule Ly Config-[ly, 0] must be either in
state B or in state X; = [Ly, Ry}, for some Ly < Ry, in period t, t =0,1,....

Proof. The statement is trivially true for t = 0. If in period ¢t Config-
[lo, 0] is in state B, then clearly it remains in state B in period ¢ + 1. Let
us assume that in period t Config-[fy, ro] is in state x; = [y, 1] for some
¢y <1y, where z; is a possible realization of X; = [L;, R;]. We show that in
period ¢ 4+ 1 Config-[¢y, 9] will either be absorbed by B or consist of a single
R-interval. We need to examine two cases, depending on the value of |z,
the size of the R-interval [¢y, ).

1. |x¢] = 1. Suppose there is a single R-site on the line located at ¢; = r;.
To determine the state of Config-[¢y, o] in period t + 1, it is sufficient
to consider the successes and failures of sites BRB in period t, since
all other B-sites have blue neighborhoods and do not change color in
period t+ 1. Note that the lemma would be false only if BRB changes
to RBR in period t + 1. But this is an impossible event, because in
order for the central R in BRB to switch to B, it must have failed in
period t. Then rule L; prescribes that its two neighboring blues should
not switch to R in period ¢ + 1.

2. |xy| > 2. There are at least two R-sites in the interval [¢;,;]. We only
need to consider the experimental outcomes of the two leftmost sites
BR and the two rightmost sites RB in BRR--- RRB at time t, where
the cardinality of the central R-interval, R--- R, equals |x;] — 2 > 0.
Clearly, the lemma is valid as long as in period t + 1,

(a) the two leftmost sites BR in BRR - -- RRB do not change to RB,
and

(b) the two rightmost sites RB in BRR--- RRB do not change to
BR.

Since (b) is a mirror image of (a), we only need to prove case (a).
Since B in BR has a blue left-neighbour and R in BR has a red right-
neighbour, by rule Ly, B will learn from R when his technology is a
failure, and vice versa. Thus, if (a) were false, both B and R must
have failed in period t. Then by rule L;, neither B nor R would have
switched his technology.



We thus conclude in period t + 1 Config-[{y, 79] must be either in state B
or in a state of the form [€;; 1, r1], for some f11 < 7y1. W

;From Lemma 1, we can treat Config-[(y, ro] as a Markov chain {X;, ¢t =
0,1,2,... |X0 = [lo, 0]}, bo < 19, where Xy, t = 0,1,..., assume values in
the state space

S={BURUIr]: L <r Lir=0,£1,+2 ...} (1)

Associated with Markov chain {X;,t = 0,1,2,... |X0 = [lo, ro]} is its car-
dinality process , {|X;|,t = 0,1,...||Xo| = ro — € + 1}, where |X,| is the
number of R-sites in [L;, R;] in period t:

B 0 lf Xt — B:
[Xel = { R, — L+ 1 if Xy =[Li, Ry 2

Evidently, the cardinality process{|X;|,t =0,1,... HX0| =ro—Vlo+1} is also
a Markov chain defined on the right half line Z,. Note that | X;| = 0 means
that Markov chain {X;,t =0,1,...} is absorbed by state B prior to time ¢.

Lemma 2 Let {|X;|,t =0,1,...||Xo| = i} be the Markov chain defined by
(2), with initial state | Xo| =i. Fori=2,3,..., let T; be the stopping time
of the event

T; =min{t: 0 < t < oo, |Xy| € {0,1}||Xo| =1}, (3)

where T; = oo if the above event never occurs. Then, fori=2,3,...,
P(|X7i| = 400 || Xo| =) :=, >0, (4)
P(|X7i| € {0,1}|Xo| =) = 1 — ;. ()

Proof. If |X;| = 1, then |X;y1| depends only on the outcomes of sites
BRB in period t. Let |X;1| = |X;| + Y;!, where Y;! is the net gain of R-
sites in period ¢ + 1, given |X;| = 1. It is easily seen that Y;' follows the
distribution

( —1) = (1—pR)(1— (1—-ps)?),
=0) pRpB (1—pr)(1—p5)*,
( =1) = 2prpp(1 — pB),

P(Y; =2) = pr(1 —pp)*.



The mean of ¥;! works out to be

E[Y}] =2(pr — pg) + p5(1 — pr)- (6)

Now consider |X;| > 2. In Lemma 1 (2), we have shown that |X; |
depends on the successes and failures of the two leftmost sites and the two
rightmost sites of BR R--- R RB, since all other sites do not switch technolo-
gies in period t + 1. Let | X, 1] = | X;| + V¥ + Y,E, where Y, and Y,” are the
net gains of R-sites in period t+ 1 from sites BR and RB in BRR--- RRB,
respectively. Since sites BR only learn from each other and similarly sites
RB, random variables Y, and Y,®, given |X;| > 2, are independent and
identically distributed with the distribution

Pt =-1) =P =-1) =(1—pr)ps,
P(Yr=0) =Py =0) =pgpp+(1-pr)(l-ps)
P(Yr=1) =P f=1) =pr(l-pp),
and the expectation
ElY{"] = E[Y,f] = pr — ps > 0. (7)
Now consider (4). We have

P(|XTZ

= +00 | [Xo| = 4) = P(|Xr,| = +00, T, = 00 | [ Xo| = 1)

where the stopping time 7; is defined in (3). First note that the second prob-
ability on the right hand side (RHS) of (8) must be zero, since a configuration
starting with a finite R-interval and with the maximum net gain less than or
equal to 2 in each period cannot be absorbed by R in a finite time 7T; < oo.
Thus (8) reduces to

P(|Xr,| = +o0 || Xo| =) = P(|Xz,| = +00, T; = 00 [|Xo| =1).  (9)

Equation (9) is the probability that the Markov chain {|X;|,t = 0,1,...T;| | Xo| =
i} is absorbed by +oo at time T; = oo. To prove this probability is strictly
positive, observe that the Markov chain is equivalent to the following ran-
dom walk on Z,: The random walk starts in state ¢ € {2,3,...} and has
i.i.d drifts VI + Y, with a positive mean E[Y;* + V%] = 2(pr — pg) > 0.
The random walk ends as soon as it reaches either state 0 or state 1. It is
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well-known (see, for example, Feller (1971)) that such a random walk either
drifts to +o0 in equilibrium or is absorbed by states {0, 1}, both with strictly
positive probabilities, say 7, and 1 — +,, respectively. This proves (8) and
henceforth (4). Similarly, (5) can be written as

P(|Xr,| € {0,1} ||Xo| =4) = P(IXz| € {0,1}, T; = o0 ||Xo| =)
+P(|Xr| € {0,1}, Ti < o0 ||Xo| = 1)
= P(|Xz| € {0,1}, T; < o0 [[Xo| =), (10)

where P(|Xr,| € {0,1}, T; = oo ||Xo| = i) = 0 because {T; = oo} means
that the chain never visits states {0,1} and then the random walk result
states that the chain at {7; = oo} must drift to +00. The last equation of
(10) corresponds to the probability that the aforementioned random walk is
absorbed by states {0, 1}, which equals 1 —, as we have shown. This proves
(5). m

The next proposition states that given Xy = [lg, 0y + i — 1], ¢ > 2, the
Markov chain {X;,t = 0,1,... | Xo = [lo, o + i — 1]} at stopping time T;
is in state R with probability v, > 0 and in the set of states {B,[(, /], { =
0,41,+2, ...} with probability 1 — ~,.

Proposition 3 Let {X;,t = 0,1,...|Xo = [lo,lo + i — 1]} be the Markov
chain associated with Config-[ly, by + i — 1], with state space S given in (1).
Then fori=2,3,...,

P(Xr, =R|Xo = [lo, bo+i—1]) = 7, (11)
P(Xr, € {B,[(,0],0 =0,%+1,.. }|Xo=[lo,lo+i—1]) = 1—7,. (12)
Proof. First note that since the line extends to infinity in both directions,

the probabilities given in (11) and (12) depend only on the cardinality of X
and are independent of the location of Xj. Therefore,

P(Xr, = R|Xo = [lo, b +i—1]) = P(Xg, = R| |X|o = 9), (13)
and similarly in (11) we can replace Xy = [{y, lp + i — 1] by |Xo| = 1.
Now conditioning on | X7, |, we express (13) as
P(X7, = R| | Xo| =)
= P(Xg, = R| |Xo| =i, |Xr,| < 00)P(|X1,| < o0 | | Xo| =1i)
+ P(Xr, = R| | Xo| =14, |Xr,| = 00) P(| Xr,| = 00 | | Xo| = 1)
=7 P(Xr, = R| | Xo| = i, | X1, | = 00), (14)

11



where we have used (4), (10) and the fact that {Xz, = R| | Xo| = i,[X7,| <
oo} is an impossible event and thus has a null probability. Therefore, to
prove (11), we need to show

P(Xr, =R| |Xo| =4, |Xp,| = 00) = 1. (15)

In other words, if the cardinality of a R-interval is +o0o, then the boundaries
of the R-interval must extend to infinity in both directions. Toward this end,
note from (8) that

{’XTZ

=00 | | Xo| =i} <= {|Xg| = 00, T; = o0 | | Xo| = i}

If the above event occurs, the process {|X;|,t = 0,1,...,T; = 0¢ | | Xo| =
i} never visits states 0 and 1 and thus there are at least two R-sites in
the interval X; = [Ly, Ry] for t = 0,1,...,T; = co. As we argued previ-
ously, in this case {Y,X, t = 0,1,...,T; = oo} is a sequence of i.i.d ran-
dom variables, independent of the sequence {V,, t = 0,1,...,T; = oo}.
Thus, {Li,t = 0,...,T;| |Xo| = i,|Xr,| = oo} can be viewed as a ran-
dom walk on (—oo, +00) with initial state £y and i.i.d random drifts —Y,,
t=0,1,...,T; = oo. Since the expected drift —F[Y,1] is negative, it is known
(again, see Feller 1971) that such a random walk drifts to —oco as t — oo,
with probability 1. Thus

P(Ly, = —o0 || Xo| = 1,|X75,| = 00) = 1. (16)

Similarly, {R;,t = 0,...,Ti| |Xo| = 4,|Xr,| = o0) is a random walk on
(—00, +00) with initial state ry and i.i.d random drifts V;%, ¢t =0,1,...,T; =
oo. Since E[Y;F] > 0, the random walk drifts to +o0o with probability 1 as
t — oo. Thus

P(Rr, = 400 | | Xo| =4, |Xr,| = 00) = 1. (17)
Combining (16) and (17),

P(Xr, = R| |Xo| =4, |X7,| = o0)
= P(Ly, = —00, Ry, = +oo\ | Xo| =i, | X7,| = 00) = 1. (18)

This proves (15) and also (11). The proof of (12) is analogous and we omit
the details. m
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2.2 Sequential Coupling

We assume that in the original configuration, each agent on the line is in-
dependently assigned R(= 1) with probability 0 < ¢r < 1 and B(= 0) with
probability 1 — qr, at time 0. For convenience, we call the original process
that starts with a randomly assigned technology at each site Config-O. It
is clear that Config-O at time 0 has infinitely many R-intervals with their
cardinalities at least 2.

The proof in this section proceeds as follows. From the original process
(Config-O), which is denoted by Z;,t = 0,1, ..., we choose an interval of all
reds that has a cardinality of at least two at ¢ = 0. We couple this with an
auxiliary process that has only two reds at time 0 and is “covered” by the
interval chosen from the original process, in the sense of having blues wher-
ever the original process had blues. The first part of the proof demonstrates
that we can find a coupling such that if this covering holds at time ¢,it holds
for ¢t + 1.To this end a process 7. is constructed such that the marginal dis-
tributions of Z; and Z, are the same for all t, and the location of the chosen
red interval is the same in both processes at t = 0. By appropriately choos-
ing random variables that move together in the two coupled processes, the
construction maintains the covering property for all ¢ for the adjunct process
that has an interval with only two reds at time 0. The existence of such a
sample path inequality is equivalent to a distributional inequality in which
the leftmost point of the original interval at time ¢ is stochastically less than
the leftmost point of the interval that started with only two reds and the
rightmost point is stochastically greater. Thus the process starting with two
reds serves as a stochastic lower bound for the evolution of the chosen red
interval in the original process. We know the size-two interval either goes
to infinity with positive probability or is absorbed in a size-1 or size-0 state
with positive probability. If the latter happens, we restart with a new red
interval of cardinality at least two in the original process and so on. 3

Let Zy = {Zo,i,i = 0,41,£2,...} be the state of Config-O at time zero,
where Z[)J‘, 1=0,£1,42, ..., are i.i.d random variables with P(ZM =R) =

3The coupling technique is a standard  tool in probability theory; the general procedure
is to construct for the process of interest X; an auxiliary process X; such that the marginal
distribution of X; is the same as that of X;, for all ¢t. The two coupled processes move
together using the realisation of the same random variable, and sample path inequalities
on a particular realised trajectory are equivalent to distributional inequalities among the
two processes, so that one can serve as a stochastic lower bound (for example) for the
other.See the references given earlier for more details on the general technique.
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gqr and P(Z[)J' = B) =1—qg. Let {Zt,t = 0,1,...} represent the process
associated with Config-O, with initial state Zo. Tt is clear that {Zt,t =
0,1,...} is a Markov chain. Let X, = [lo,To], To > o be one of the R-
intervals (with cardinality > 2) from Config-O at time 0. Denote the location
of the R-interval in period ¢t by X, = [f/t, Rt], where L, < R, means that the
interval still exists by ¢ and I~/t > Rt means that the R-interval ceases to exist
byt,t=0,1,....

Let {X;,t = 0,1,...|Xo = [lo, 4 + 1]} be the Markov chain associated
with Config-[lo, {o + 1], a configuration that starts with only two R-sites lo-
cated at integer points {{y, {o+ 1}, respectively, at time 0, £y = 0, £1,+2, .. ..
Similar to (3), let Ty be the first time that Config-[ly, £y + 1] visits states
{BU[(, 0], =0,+1,+2,...}:

T =min{t : 0 <t <00, Xy € {B,[(, 4,0 =0,+1,...}| Xo = [lo, o + 1]}
=gmin{t : 0 <t < oo, |Xy| € {0,1}}| [ Xo| =2}, (19)

where X = Y means that X and Y are equal in distribution.

Lemma 4 Let X, = [2077:0], 7o > lo, be a R-interval from Config-O at time

0 and let X, = [Ly, Ry] be the location of the R-interval at time t, where
we take the convention that L, > R; indicates that the R-interval no longer
exists at time t. Let Config-[lo, by + 1] satisfy, in period 0,

XO = [E[),E[) —|- 1] g [20,7:0] == X[). (20)

Denote the state of Config-[ly, lo + 1] in period t by X; = [Ly, Ry], | Xi| > 2,
t=0,1,...,Ty, where T is the stopping time defined in (19). Then, for any
t:O,]_,...,Tg,

Li<¢ L, (21)

Rt Zst Rt' (22)

Proof. We shall construct a configuration, call it Config-O, governed by

the Markov chain {Z;,t =0,1,... ,TQ‘ZO = Zo}, such that it obeys the same
probability law as {Z;,t =0,1,...,T}:

Zo = Zy (23)

Zt—&-l‘zt st Zt+1|zt7 = 07 17 oo 7T27 (24)
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but, for t =0,1,...,T5,

Ly =4 L (25)
and R
L; < L; with probability 1. (26)
Similarly,
R, =4 R, (27)
and R
R; > R, with probability 1, (28)
where X, = [Lt, Rt] is the location of the R interval, with initial location

Xo=Xo = [ﬁo, Tol, at time ¢ in Conﬁg—O Then, from the result of stochastic
ordering (see, e.g., Proposition 9.2.2, Ross 1996), (25) -(28) imply (21) and
(22), respectively.

Our sample path construction proceeds on t. Equations (23)-(28) hold
trivially for ¢ = 0, due to (20). Next we show (23)-(28) hold for ¢ + 1, based
on the hypotheses they hold for ¢t. To construct Lt+1 and Rt+17 we couple
sites BR located at sites {Lt -1 Lt} in Config- O with sites BR located
{L;—1, L;} in Config-[{y, {o + 1] so that they yield the identical outcomes at
time ¢. Similarly, we couple sites RB located at sites { Ry, R, 41} in Config-O
with sites RB located { R, R;+ 1} in Config-[{y, {o + 1] so that they yield the
identical outcomes at time ¢. Note that the left and right boundary couplings
do not interfere with each other because for 0 < t < T5, the cardinalities of
the R-intervals in both configurations are at least two. Let any other site in
Conﬁg—(), except for the two left-boundary sites and the two right-boundary
sites identified above, have its own realization of experimental outcome at
time ¢, independent of everything else.

Due to the Markov property, the probability law governing Zt+1 (Ztﬂ)
depends only on 7 (Zt) and their experimental outcomes at time t. From
our hypothesis, (23) holds for ¢ — 1:

Zt‘zt—l =st Zt|zt—1-

In addition, the couplings prescribed above ensure that the experimental
outcomes of Z,; are stochastically identical to that of Z,. Therefore,

Zoi1|2i = Zia|Zs, (29)

which proves (23) for ¢ + 1.
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Next we prove (27)-(28). Due to symmetry, (25)-(26) can be shown anal-
ogously. Toward this end, let YtR, YR and Y,® be the net gains of R-sites in
Config-O, Config-O and Config- (o, fo—i-l] in period t+1 from the right bound-
aries of their respective R-intervals. Since SA/;R depends only on the outcomes
of {Zt,i,z’ > Rt}7 and ff;R depends only on the outcomes of {Zt,i,i > Rt}, our
hypothesis (23)-(28) and the prescribed coupling imply that

VR =, VE (30)

In addition, R, is independent of Y;R, since YR depends only on the output
of the site R, (that is, Zt &,) but not the locatlon R, itself. Similarly, Y;? is

independent of R;. Then, from (27) and (30),
Riy =R+ Y =4 R+ Y/ = R, (31)

which proves (27) for ¢ + 1. Finally, to prove (28) for ¢ + 1, recall that our
coupling requires that the sites RB located at {Rt, R, + 1} in Conﬁg—O in
period ¢ have the identical outcomes as the sites RB located in {R;, R; + 1}
in Config-[¢y, o + 1] in period ¢t. Therefore, if at time ¢,

e The sites RB in Config-[¢y, o+ 1] were (f, s), where f stands for failure
and s success, then RB in both configurations become BB at time ¢+ 1
and hence Y;® = Y, = —1;

e RBin Config-[{y, ly+1] were (s, s) or (f, f), then RB in Config-[{, £y+
1] are still RB, but RB in Config-O become either RB or RR at time
t+ 1, depending on whether there is a R on the right of the B and the
R succeeds. Therefore, }A/;R > Y/ =0;

e B in Config-[¢y, o + 1] were (s, f), then RB in both configurations
become RR at time ¢ + 1 and we have YV;® > V,® = 1.

Those events imply
VR > YR with probability 1. (32)
Then (32), together with (28), further implies
Ry =R +YE
> R, + Y =Ry, with probability 1, (33)
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this establishes (28) for ¢ 4+ 1, and also our induction proof. m

The next theorem shows that if pr > pp, then R prevails with probability
1 in Config-O, as t — oo.

Theorem 5 Under rule Ly, Config-O will be absorbed by R ast — oo, with
probability 1.

Proof. We establish the theorem by repeatedly coupling Conﬁg—@j with
Config-[¢), ¢} + 1], 7 = 1,2, ..., until Config-[¢}, ¢} + 1] is absorbed by R for
some j.

Specifically, at time zero we arbitrarily select a R-interval, say Xy =
0o, 7o], 7o > Co, from Config-O. Accordingly, we select Config-[¢}, £ + 1] such
that [fo, 7o) D [£}, £3]. Let T} be the stopping time defined in (19). As shown
in Lemma 4, we can construct Config-O!, {Z!,t = 0,1,...,T}|Z) = Z},
where Z! is the state of Config-O' at time ¢, such that

{Z,t =0,1,...,T}}
= {Z}t=0,1,..., THZ, = Z},

and for t = 0,1,..., T},
[L;, R}) 2 [L;, R}], with probability 1,

where [L}, R1] and [L}, R!] are the locations of the R-intervals at time ¢ in
Config-O' and Config-[¢}, £} + 1], respectively. If T} < oo, that is, if the
R-interval in Config-[¢}, £} + 1] either disappears or is reduced to a single
R-site at a finite time T3, then we select another R-interval from Config-O
at time Ty, say XT% = [szz}, RT%], RTQI > I~/T21. Such a selection is possible
because there are infinitely many R-intervals with their cardinalities at least
2 at time 0 and those R-intervals cannot all disappear or become a single
R-site in a finite time T, < co. Correspondingly, we select Config-[L2, L2 +1]
so that [f)Tz}, RT%] D [L%, L2+ 1]. From Lemma 4 again, we can construct
Config-02%, {Z2,t = T},..., T} + T;]ZT% = ZTJ}, where Z? is the state of
Config-O? at time ¢ = T}, ..., T} + T2, such that

(Zy,t =T3, Ty +1,..., T} + T3}
= {2t =T3,Ty +1,.... Ty + T§|Zpy = Zpy },
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and for t =Ty,..., Ty + T3,
(L7, R7) D [L}, R], with probability 1,

where [L?, R?] and [L?, R?] are the R-intervals at time ¢ in Config-O? and
Config-[L§, L§ + 1], respectively. o

Let 7F = Z;f:l T5, where Ty is the stopping time of Config-[L}, L} + 1],
j=1,2,.... We repeat the above coupling process until time 7, where

J=min{j:1<j < 0o, T = oo}

Since T: 2” < oo with probability 1 — 7, and T! = oo with probability Yo,
j=1,2,..., J follows a geometric distribution with v, > 0 and is finite with
probability 1. Thus, at time 77, Config-[L{, L] + 1] will be absorbed by R.
Finally, because

{Zyt=T""1,... T

= {2 t=T"".... T2y , =27 .}, j=12,...,/,

and for j =1,2,...,J,
(LI, RI] DL, RI], T77' <t < T7 with probability 1,
we conclude

P([Lys, Rys) = R) = P([L}s, L] = R)
> P([Ly;, Ry ] =R) =1

This completes the proof of Theorem 5. m

Note that we have assumed randomly chosen initial conditions in this
proof. It is clear that the result does not hold if we start from the All Blue
configuration. However, any initial configuration that has an infinite number
of Reds will give the same result. This can be argued as follows. If initially
there are finitely many R-intervals in Config-O, then there must be at least
one R-interval with infinitely many reds. Clearly, this R-interval always has
infinite reds for finite ¢ and our sequential coupling approach is applicable.
On the other hand, if initially there are infinitely many R-intervals in Config-
O, then it is easily seen that this initial configuration can generate infinite
R-interval of length at least 2 in the next period and we will start our coupling
from the next period. As a specific example, consider the initial configuration
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Here there is no initial red interval of length at least 2 so we cannot
begin the sequential coupling immediately. However, it is clear that, with
probability 1, there will be infinitely many red intervals of length at least 2
from the next period onwards. We begin the first coupling at this time and
our sequential coupling approach can still apply.

3 'Technology Diffusion under Rule L,

Under learning rule Lo, agent ¢ performs his experiment, observes what tech-
nology ¢ — 1,7+ 1 and, of course, ¢ himself are using, and also whether these
neighbouring agents obtained successes or failures. If ¢ is using R, and the
proportion of successes of agents in his neighbourhood using B is strictly
greater than the proportion of successes of agents using R, ¢ switches to
B in the next period and similarly for any agent using B. The switching
probabilities of the central agent ¢ under rule Lo are as follows:

1. BBB or RRR: No switch;
2. BBR or RBB: Switch with probability (1 — p%)pg;

(

3. RRB or BRR: Switch with probability (1 — p%)pg;

4. BRB: Switch with probability (1 — pg)(1 — (1 — pg)?);
5. RBR: Switch with probability (1 — pg)(1 — (1 — pg)?).

Note that only under cases (2) and (3) above are the switching proba-
bilities different from their counterparts under rule L;. Observe also that
agent ¢ is more likely to switch to the alternative technology under rule L,
than under rule L;. (Under rule Ly, an agent never switched if he obtained
a success.)

Consider Config-[€y,ro] described in Section 2.1. Recall that under rule
Ly, Config-[¢y, o] always consists of a single R-interval as time evolves until
absorption by either R or B. Unfortunately, this property no longer holds
under rule Ly. To see this, consider a R-interval with at least four reds so
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that the switches at the left and right boundary sites are independent. Let
us consider RRBB located at the neighbourhood of the right boundary of
the R-interval. If the outcomes of RRBB are (f,s,s, f), then in the next
period those sites will change to RBRB, resulting in a red “hole” between
two blues.

Another property of rule L, which is essential to our sequential coupling
approach in Section 2, is that if the R-interval X; = [L,, Rt] in Config-[{y, 1]
is “covered” by the R-interval X, = [Lt7 Rt] in Conﬁg—O at time ¢, then we
are able to construct a coupling such that X;,.; is again “covered” by Xt+1
at time ¢ + 1, with probability 1 (see Lemma 4). This property is invalid
under rule Ly. For example, suppose R; = Rt, and the four sites located
at [Ry — 1, Ry, Ry+ 1,R, + 2| = [R, — 1, Ry, Ry + 1, R, + 2] in Config-[¢y, (]
and Conﬁg—(j at time t are, respectively, RRBB and RRBR. Suppose the
outcome of those four sites in both configurations are (s, s, s, f). Then under
Ly, RRBB in Config-[{y, ro] will change to RRRB and RRBR in Config-O
will change to RRBB, and X;.; is no longer covered by Xt-i—l at the right
boundary at time t + 1.

To overcome the above difficulties, we modify rule Ly for Config-[¢y, 7]
as follows:

M1. If the outcomes of RRBB (BBRR) located at the right (left) bound-
ary of X; in Config-[{y, o] are (f, s, s, f), which occur with probability
(1 — pr)prps(l — pp), then we let RRBB (BBRR) become RBBB
(BBBR) in the next period. In other words, whenever a R-interval
splits at the boundary of the interval we will change the rightmost
(leftmost) red site to blue.

M2. If the outcomes of RRBB (BBRR) located at the right (left) boundary
of X, in Config-[¢y,ro] are (s,s,s, f) ((f7s7s7s)), which occur with
probability p%pgp(1 — pp), then we let RRBB (BBRR) retain their
states RRBB (BBRR) in the next period.

It is worth mentioning that we only modify rule Ly for Config-[¢y, ro].
Rule L, is still enforced in the original configuration, Config-O.

M1 ensures that a configuration starting with a single red interval always
consists of a single red interval until its absorbtion by B, if that event ever
occurs. As such, we can again treat Config-[¢y, o] under the modified L, as a
Markov chain {X;,t =0,1,2,... ‘XO = [lo,m0]}, 0 > Lo, where X; = [Ly, Ry]
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is the location of the R-interval at time ¢, ¢t = 0,1,.... Let {|X;|, ¢ > 0]| Xo| =
ro — o} be the cardinality process of {X;,t =0,1,2,... |X0 = [lo, 0]}, with
| X¢| defined by (2). Also redefine T; as the stopping time of the event

T; =min{t : 0 <t < o0, |X;] < 4[| Xo| =1 >4}, (34)

where T; = oo if the above event never occurs.
The next lemma can be considered as an extension of Lemma 2 and
Proposition 3.

Lemma 6 Let {X;,t=0,1,...| Xo = [lo,lo + i — 1]} be the Markov chain
associated with Config-[ly, by + i — 1] under the modified rule Lo.

1. Iflf—%% > 1323, then for i > 4,

P(|X7,| = 400 || Xo| =) :=7; >0, (35)
P(|Xg,| < 4][Xo| =) =1 -1, (36)

2. If L& > LB then fori > 4,

1-p% ~ 1-pp’

P(Xri = R|Xo = [o, by +i —1]) = 7;, (37)

P(Xr; € {[0,0+1],[6,0+2],£ = 0,£1,.. }| Xo = [lo, lo+i—1]) = 1—,. (38)

Proof. We only prove (1), the proof of (2) is similar to that of Proposition
3.

Under the modified Lo, |X:11| depends on the successes and failures of
the four leftmost sites and the four rightmost sites of BBRR R--- R RRBB.
Again let | X; | = | X + YVl + V.2 where V" and Y;® are the net gains of R-
sites in period t+ 1 from sites BBRR and RRBB in BBRR R--- R RRBB,
respectively. Because |X;| > 4, Y;X and Y,? are independent and identically
distributed and we only need to consider Y;%. Examining the proof of Lemma
2, it is sufficient to show that under the condition {5 > - F [Y,E] > 0.

R

1- 1-pB’
Under the modified Ly, Y, has the distribution
P(Y® = 1) = (1 — pr)ps + (1 — pr)PrpE + (1 — pr)PRPE(1 — PB),
P(v," =1) = pr(1 — pa),
P(Y" =0) = (1 —pr)(1 — ps) + pips + pEps(1 — ps), (39)
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where the first equality holds because the event Y, = —1 means that the out-
comes of RBin RRBB are (f, s), or the outcomes of RRBB are (f, s, s,s), or
the outcomes of RRBB are (f, s, s, ), where the last case is due to M1. The
second equality holds because the event Y, = 1 means that the outcomes of
RB in RRBB are (s, f). The third equality holds because the event Y;® = 0
means that the outcomes of RB in RRBB are (f, f), or the outcomes of
BBRR are (s,s,s,s), or the outcomes of RRBB are (s, s, s, f), where the
last case is the result of M2. We then work out the expectation as

E[Y,"] = pr — p — PrRDB + DRPB (40)

Thus the above expectation is positive as long as 2 I;% > %. [ ]

Next consider the original configuration, Config-O, under rule Ly, where
at time 0 each agent on the line is independently assigned R with probability
0 < qr < 1 and B with probability 1 — gg. Let {Z,,t =0,1,...} be similarly
defined as in Section 2 but under rule Lo. Let X, = [lo, 7o), To — Lo > 4, be
one of the R-intervals from Config-O at time 0. As time evolves, the location

of the R-interval at time t 4+ 1 > 1 is given by
[Z;t+17 RtJrl] = [f/t - }N/;SL7 Rt + }N/:‘,RL t= 07 17 ey (41)

where Y} (V;1) is the net gain of the R-sites from the right (left) boundary
of the interval, and it is understood that if RB (BR) in BRR--- RRB at
time ¢ becomes BR (RB) at time period ¢ + 1 (i.e., the R-interval splits),
then the R-interval loses one R-site from the right (left) boundary and hence
ViR =—1 (Yt =—1). Let {X,,t=0,1,...|Xo = [lo, % + 3]} be the Markov
chain associated with Config-[{y, £y + 3] , €o = 0,41, £2, under the modified
Ls. The next lemma extends Lemma 4.

Lemma 7 Let Config-[€y, lo + 3] satisfy, in period 0,
Xo = [bo, 4o + 3] C [lo, 7o) = Xo- (42)
Let Ty be defined by (34). If 22 > 22—, then for any t = 0,1,... T},
Pr PB

L <4 Ly (43)
Rt Zst Rt- (44)
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Proof. Our approach to establish the result is analogous to that of
Lemma 4, the only difference is that the coupling is constructed differently.

As in the proof of Lemma 4, we construct Config-O, governed by the
Markov chain {Zt7t =0,1,... 7T4‘Zo — Zo}, such that it obeys the same
probability law as {Z;,t =0,1,...,Ty}:

Zo=Zo, Zps1|Z = Zo1|Zy, t=0,1,...,Ty, (45)
but, for t =0,1,...,T},
L, =y L; and L; < L, with probability 1, (46)
and
R, =4 R, and R, > R, with probability 1, (47)

where X, = [Lt7 Rt] is the location of the R-interval at time ¢, with initial
location Xy = X, in Config- O. We emphasize that as in Config-O, rule Ly is
implemented in Config-O.

¢ From (42), (45)-(47) are trivially true for ¢ = 0. Next we show (45)-(47)
hold for ¢ + 1, based on the hypothesis that they hold for ¢. Our coupling is
constructed based on the configurations of the boundary sites of X, and X, as
follows. We couple the outcomes of RRB (BRR) at sites { Ry — 1, Ry, Ry + 1}
({L:—1, Ly, Ly + 1}) in Config-[fo, o + 3] with the outcomes of RRB (BRR)
at sites {Rt -1 Rt, R, + 1} ({Lt -1 Lt,Lt + 1}) in Config- O so that they
yield the identical outcomes at time ¢. In addition, if the color at site R, +2
(site Ly — 2) in Config-O is B, we couple its outcome with that of B at site
R; +2 (site L; —2) in Config-[{y, £y + 3] so that their outcomes are identical;
if the color at site R, +2 (site L— 2) in Conﬁg—@ is R, we couple its outcome
with that of B at site R, + 2 (site L; — 2) in Config-[fy, ¢y + 3] so that if
B in Config-[(y, {o + 3] is a success then R in Config-O is also a success, at
time t. This coupling is possible because pr > pp. Let any other site in
Config-O or Config- [lo, Lo+ 3], except for the four left-boundary sites and the
four right-boundary sites identified above, have its own outcome at time t,
independent of everything else.

Next we show (45) and (47) hold for ¢ + 1; the proof of (46) for ¢ + 1 is
analogous to that of (47). Let SA/tR7 }ZR and Y, be the net gains of R-sites
in Config-O, Config-O and Config-[¢y, ¢y + 3] in period ¢ + 1 from the right
boundaries of their respective R-intervals. Following the similar arguments
that lead to (29) and (31), we have

Zyi1|2i =t Zia|Zs, (48)
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and R R R R R 3
Ry = Ry + YtR =g I + YtR = Ry11, (49)

which proves (45) and the first equation in (47) for t 4 1, respectively. Next
we prove the second expression of (47) for ¢+ 1. For this, we consider several
possible outcomes of the four coupled sites in the two configurations at time
t.

e RB in RRBB in Config-[¢y, ¢y + 3] were (f,s), or RRBB in Config-
[0, Lo+3] were (f, s,s,s)or (f,s,s, f). Then under the modified Ly, the
sites RRBB in Config-[{y, ¢y + 3] become RBBB. From the coupling
described above, the four coupled sites RRBB (RRBR) in Config-O
become either RBBB, RBRR or RBRR (RBBB or RBBR) at time
t+ 1. Hence YtR =YR=-1

e RB in RRBB in Config-[{y, {y + 3] were (f, f), or RRBB in Config-
[Co, Lo+ 3] were (s,s,8,5)or (s,s,s, f). Then under the modified Lo, the
sites RRBB in Config-[{y, ¢y + 3] are still RRBB at time ¢t + 1. From
the coupling described above, the four coupled sites RRBB (RRBR)
in Conﬁg—é become either RRBB, RRBR, RRRB or RRRR (RRBB
or RRBR), at time t + 1. Hence Y;? > Y;F = 0;

e RBin RRBB in Config-[y, lo + 3] were (s, f), then RRBB in Config-
[€o, o + 3] become RRRB and RRBB or RRBR in Config-O become
either RRRB or RRRR, at time t + 1. Therefore, Y, > V;® = 1.

The above events imply that
Vi > Yk with probability 1, (50)
and it further implies
Ry =R +YE
> R, + YR =Ry, with probability 1, (51)
where in the last inequality we used the hypothesis R, > R, with probability

1. This establishes the second part of (47) for ¢t + 1, and also our induction
proof. m

The next theorem states that if 1;2 > 2 Lz, then R prevails with prob-
R

ability 1 in Config-O, as t — oo. Its proof is similar to that of Theorem 5
and we omit the details.
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Theorem 8 If % > LB then Config-O under Ly will be absorbed by R

R 1-pB’
as t — oo, with probability 1.

Following the remark given at the end of Section 3, one sees that the
result of this section is still valid for any initial configuration of Config-O
with infinite number of reds.

4 Conclusion

This paper has considered two simple rules of learning by imitation by which
(extremely) boundedly rational agents can learn from their own experiences
and the experience of others in their neighbourhood on the integers. The two
rules are very similar; the basic difference is that in the first case an agent
who succeeds does not want to “fix what isn’t broken” and does not change
his action, while in the second each agent, no matter what the realisation of
his or her own experiment, takes into account the experiences of neighbours
in deciding what to do next. We are able to prove that the first rule leads
to diffusion of the better technology with probability 1; the second, however,
converges in the same way if the better technology is sufficiently better.

We initially began this paper looking at two-dimensional lattices. How-
ever, we do not know if a similar result holds in this case. This is a topic
for future work. There is some evidence from simulations that clusters of the
inferior technology might survive, but the simulations were run for too brief
a period of time and on too small a finite grid for us to believe that these
results will carry over. Our conjecture is that a result similar to the one we
have in this paper holds for two dimensions as well, but this remains to be
shown.
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