
Math 486. Mathematical Theory of Games. Class notes. by L. Vaserstein.
Last updated  on Dec 6,   2018  

Contents

Ch1.  Examples of games
§1. One-player games.
§2.  Two-player games.
§3. Solving some games

Ch2.  Background
§4. Logic
§5. Matrices
§6.  Linear equations

Ch3.  Definition of game
§7.  Graphs (networks). Extensive form. Strategy.
§8. Normal (strategic) form. Equilibrium.
§9. Equilibrium/ Its existence  for finite extensive form with perfect information.

Ch4. Matrix games
§10. Definition. Mixed strategies. 
§11. Optimal strategies. The minimax theorem.
§12.  Examples.

Ch 5, Linear. programming
§13,  Definitions.
§14.  Standard tableaux.
§15.  From matrix game to standard tableau.

Ch6.  Simplex method
§16. Phase 2.
§17. Phase 1.
§18.Duality.  Theorem on 4 alternative.

Ch7. Cooperation
§19. Nash bargaining.



§20. Coalitions. Shapley values.
§21. Examples.

Ch8. Advanced topics
§22. Repeated game. Fictitious play.
§23. Evolutionary games.
§24. Auctions.
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A free book in pdf:
Game Theory Alive , by Anna Karlin and Yuval Peres, to be published by the American 
Mathematical Society (2016).

Math 486. Mathematical Theory of Games
Game Theory is about 
defining games, 
defining solutions, 
finding solutions (if exist).

Here is a definition from  Game theory  wiki:
Game theory is "the study of mathematical models of conflict and cooperation between 
intelligent rational decision-makers". Game theory is mainly used in economics, political 
science, and psychology, as well as logic, computer science and biology.[1]

This is not a mathematical definition. What is "conflict"  here?
 iI there is only one player where is conflict?

Here is a story  explaining what "mathematical" means.

Black Sheep
An engineer, a physicist, and a mathematician were on a train heading north, and had just crossed 
the border into Scotland.

• The engineer looked out of the window and said "Look! Scottish sheep are black!"

http://homes.cs.washington.edu/~karlin/GameTheoryBook.pdf
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Political_science
https://en.wikipedia.org/wiki/Political_science
https://en.wikipedia.org/wiki/Psychology
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Game_theory#cite_note-Myerson-1
https://www-users.cs.york.ac.uk/susan/joke/3.htm


• The physicist said, "No, no. Some Scottish sheep are black."
• The mathematician looked irritated. "There is at least one field, containing at least one 

sheep, of which at least one side is black."

For history, see Walker, Paul (2005). "History of Game Theory"
and Chronology of Game Theory | 

Ch1.  Examples of Games

§1. One-player games.

Ch1 means Chapter 1.
§1 means Section 1.
 
1.1. Mother of all games.  A player, Pete has to choose between $1 and $2.
Here is the solution for this simple one-player game: Pete chooses the 
maximal payoff $2.

                        Pete
                       ↙   ↘︎
                     $1      $2

 1.2. The value of game and an optimal strategy. For any one-player game. In 
general, it is clear  what  it means to solve it. The player chooses the maximal payoff, 
called the value of game, if it exists. A way to get the value of game is called an optimal  
way, move, alternative, choice, option, or strategy. 
If chance is present, we maximize the expected payoff.

. While it is easy to understand what it means to solve a one-player game, solving a 
game  can be difficult for some games. Manny casino games, including the most 
popular (blackjack, roulette) are one-player games.

1.3. An infinite game. Here is a  game  with no value.
Karl  can choose any payoff he wants.

Karl may find this   game  very attractive .  Here is a version of  the game by 
Karl Marx in 1875 Critique of the Gotha Program.:

http://www.econ.canterbury.ac.nz/personal_pages/paul_walker/gt/hist.htm#ref94
http://www.econ.canterbury.ac.nz/personal_pages/paul_walker/gt/hist.htm
https://en.wikipedia.org/wiki/Critique_of_the_Gotha_Program


to each according to his needs
(in German,  jedem nach seinen Bedürfnissen,   
I do not know who should decide what you need.

1.4. Double or nothing.   This is a more complicated situation with infinitely many 
outcomes. 
It is very popular in the  books and booklets advising you how to win every casino 
game.
You start with $1 bet in an even money wagging.   You double your bet until you win.
Your expected payoff is $1 if you ever win.  For example, if you win in the third try, it is 
-1 - 2 +4 = 1 ($).
But what if you never win? 

1.5.  Raffle. 100 tickets are sold for $1 each. They have different numbers. Then 
numbers are chosen at random for the grand prize $25, two $10 prizes, and five $1 
prizes. What is the fair value of a ticket? Answer:-$0.5.  So if you buy a ticket, your 
expected payoff is -$0.5. If you buy k tickets, you lose $k/2.
For example, if you buy all tickets, then k = 100 and you return $50 = k/2.
 The optimal solution is do not participate. (k = 0).

                   Player
            ↙ k = 0        ↘︎  k = 1
        $0           1% ↙  2%!  5%↘︎    ↴ 92%   
                     $24    $9      0   -$1 no prize

                                      
More generally, when  n tickets are distributed and the total value of the prizes is m, the 
fair value of a ticket is m/n.
This should be compared with the prize of ticket to decide how many tickets you want to 
buy.

In sweepstakes  and lotteries, total  payoff may depend on the number of tickets sold, in 
which case you  may be given odds of winning different prizes. Sometimes, you chose 
the number of your entry. 
There are many  sweepstakes with free entries. Your cost is to reveal your personal 
information.
They use it for better marketing or for getting your money.  
See Raffle wiki, Sweepstakes wiki , and  Lottery wiki  for more information

1.6. Car and goats (see  Monty Hall problem  wiki  | car &goats 
toronto  | 2 mind spring | 3 youtube |4  NYT| 5 youtube   |)

There is a car and two goats behind three closed doors.
You chose a door. The host opens a door with a goat and  offers 
you to switch (to the other closed door).

https://en.wikipedia.org/wiki/Double_or_nothing
https://en.wikipedia.org/wiki/Even_money
https://en.wikipedia.org/wiki/Raffle
https://en.wikipedia.org/wiki/Raffle
https://en.wikipedia.org/wiki/Sweepstakes
https://en.wikipedia.org/wiki/Lottery
https://en.wikipedia.org/wiki/Monty_Hall_problem
http://www.math.toronto.edu/mathnet/games/monty.html
http://www.mindspring.com/%7Ejimvb/monthall.htm
Monty%20Hall%20Problem%20-%20Numberphile
Monty%20Hall%20Problem%20-%20Numberphile
http://www.nytimes.com/1991/07/21/us/behind-monty-hall-s-doors-puzzle-debate-and-answer.html?pagewanted=3
https://www.youtube.com/watch?v=9vRUxbzJZ9Y


Should you?
                        You
         stay  /                  \switch
          /1/3  \2/3         / 1/3    \2/3
        car     goat         goat      car
            
It is not a game until we have numbers for payoffs. Suppose you 
(the player)  value  the car as $30K and the goats as $0.

                      You
         stay   /                  \switch
          /1/3  \2/3            / 1/3    \2/3
  $30K car   0 goat    0 goat      car $30K

If  you stay, the probability of getting the car is 1/3 and your 
expected payoff is $10K.
If you switch, you get the car if and only if your original 
choice was wrong. The probability of this is 2/3. So your 
expected payoff is $20K
Thus, the value of game is $20K and the optimal strategy is to  
switch. The original choice of door does not matter.

                      You  $20K = value of game
         stay   /                \  \switch optimal choice
              $10K                    20K
          /1/3  \2/3           / 1/3    \2/3
   $30K car    0 goat    0  goat      car $30K

If the host is not required to offer you to switch, it becomes a 
two-player game (like in the film "21"), after we specify the 
host's payoffs.
For example, if the host  wants to minimize your payoff. you 
should stay.

1.7.  Roulette  wiki. American roulette has 38 squares. If you 
bet  $1 on a group of  n squares and win, your payoff is  36/n - 
1 except for the case   n = 5 (top line) when it is $6 (rather 
than $6.20). If you lose, you lose your bet.

The expected payoff is  -$1/19 if n ≠ 5  and it is -3/38 when n = 
5. The value of game (for $1 bet) is  -$1/19. Every choice 
except the top line, is optimal. If you bet $b instead $1, the 
payoff is multiplied by b. You can make several bets at once. 
You may place your bet  even  after the ball is  rolling until 

https://en.wikipedia.org/wiki/Roulette


the dealer stops betting.

Player bets b on group of   n = 18 (e.g., black)

         18/38 /                   \ 20/38  

          b                             -b             Even bet,  
expected payoff  -b/19 optimal (for given b)

Player bets  b  on a number

        1/38  /   \ 37/38       probabilities

    35b              -b      Expected payoff  -b/19  optimal 
(for given b)

Player bets b on the top line (basket bet)

          5/38  /                         \ 33/38

          6b                                 -b                         
Expected payoff  -3b/38  not optimal   

French roulette has 37 square (no 00 square). The value of game 
is -$1/37 >  -$1/19. and all choices are optimal.For example if 
you bet $1 on red (n = 18), you win $1  with probability  18/37 
and lose $1 with probability 19/38, so your expected payoff is   
-$1/37. All bets  with a fixed total bet  b are optimal with 
expected payoff -b/37.

There are many other variations of roulettes.

A student asked me why they do not use  36/n - 1 for the top row 
bet.  I think the casinos do not want any change  (coins) on the 
table. In particular, they do not want to pay you  $36/5 - 1 =
$6.20. So they add  $6 to your $1 bet on the table.  
Your payoff is $6 if you win. It is better for you to bet $1 on 
each of 5 squares in the basket bet than bet $5 on the basket. 
But it is even better do not play roulette or any other game 
with negative value.



In casinos, the bet  b  should be an integer subject to the 
minimum and maximal constraints (in local currency). In our 
class, we usually require only that  b ≥ 0. The player  does not 
place any bet when  b = 0. Dealers do not use coins. 

There are many books and websites which offers you tips how to 
"win"  in roulette and other casino games. After taking this 
course, you should realize that those tips do not work.
Casinos are there to take your money  not to enrich you. There 
are laws and rules to guarantee this.
For example, you can make money on roulette if you use a 
computer or place your bet after the ball stops (both are 
illegal).
A popular tip is double or nothing strategy in one form or 
another (see 1.4 above).

An exception is that  in blackjack, counting cards  allows you 
find sometimes that the expected value of game is positive.

Another  possible  exception are  promotions (like free coupons 
or even free cash for coming to casino, free food and drinks, 
etc). 
This is like free gifts  or free samples some stores offer you 
for coming or giving personal information.
This is bait. A smart fish eats worms without getting hooked.

—— MW

1.8. Blackjack  wiki | Card Game Rules | Bicycle Playing Cards |  

There are many variations of game. For simplicity, we do not allow splitting, 
doubling, surrender, Charlie rules,  or  insurance. The dealer  draws at ≤ 16 and 
stands at ≥ 17.  At tie "push", the payoff is 0 (even if you have "blackjack", i.e., 21 
in two cards).  

Rarely in blackjack there is a rule that if the player reaches a certain number of cards, usually 5 
to 7, without busting, the player will automatically win. This is called a "Charlie."

If you surrender, you get back the half of your bet.

Information on remaining  cards may improve your odds. One assumption is that 
we have no information (many decks in the shoe). Another assumption is the we 
know everything (perfect card counting). In past, the used cards were used 
again, players could touch their cards, and others could not see your cards until 

https://en.wikipedia.org/wiki/Blackjack
http://www.bicyclecards.com/how-to-play/blackjack/


the end of game. The "many decks" here means that the  probability  of getting a 
card valued n is 1/13 for 1 ≤ n  ≤ 9, and it is 4/13  for n = 10.

An ace is counted as 11 unless it takes you over 21 in which case it is counted as 
1.  You haft a soft hand if you have  an ace which is counted as 11.

E.g., a soft n becomes hard   n  if you get 10. 

1.9. Philosophical issues.

  Is there free will?  In Game Theory, a player sometimes has freedom of choice. 

Is there chance  (indeterminism, randomness)? In Game Theory, chance 
moves are allowed in some games.

State laws require Roulette to be random. But  a  small computer can predict quite well 
outcome (when and  where the ball stops)  given  3 times   of passing 0, and you can 
still make your bet after this.

What happens if a fortune teller or a fatalist plays Roulette?  See  Fortune-telling wiki, Fatalism 

wiki,  Clairvoyance wiki,  and  Precognition wiki are beyond   the scope of our class.

See opinions of two physicists about chance:
Gott würfelt nicht – Wikipedia
Maxwell's demon - Wikipedia

Chance is a hard conception to grasp. Here is an explanation of the value of roulette 
without any chance.
Suppose you put $1 on every square in American Roulette. You total bet is $38; You get back 
exactly  $36  for sure
(the dealer adds $35  to your $1 on the winning square after taking your $37 from the 
other squares).
There is no uncertainty here. So you lose $2 (for sure) which is 1/19 of your bet.

Similarly, in Raffle, if you buy all tickets you know exactly what is your payoff. No 
chances here!
This us am explanation for  m/n in 1.5  above.

1.10.  Sum of games. Suppose we have two games with values u and v. 

https://en.wikipedia.org/wiki/Free_will
https://en.wikipedia.org/wiki/Indeterminism#Philosophy
https://en.wikipedia.org/wiki/Indeterminism#Philosophy
https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Fortune-telling#Legality
https://en.wikipedia.org/wiki/Fatalism
https://en.wikipedia.org/wiki/Clairvoyance
https://en.wikipedia.org/wiki/Precognition
https://de.wikipedia.org/wiki/Gott_w%C3%BCrfelt_nicht
https://en.wikipedia.org/wiki/Maxwell%27s_demon


We can play them simultaneously  or one after the other. 
The resulting game has value u + v. 
For example, in American roulette, you can put $1 on red and $2 on black 
at once or in two rounds.
The  value (the expected payoff) of resulting game  is -$3/19.

1.11. Mixed strategy.  In 1.1, we can decide to take $1 with probability 0.2 
and $2 with probability 0.8. The expected payoff is 0.2 × $1 +   0.8 × $2 = 
$1.80. This mixed strategy is not optimal.
 More generally, the expected payoff a mixture  pA + (1-p)B of two 
strategies  A and B with payoffs  x  and y  in any 
one-player game,  where  0 ≤ p ≤ 1,    is  px + (1-p)y. It is optimal when  p = 
0 or 1.

Remark 1.12.  Most of casino games are one-player games. 
This includes all games with slot  machines and two most 
popular games with dealers, blackjack  and roulette. This is 
because the strategies of machines and dealers are fixed.

Exercises to §1

Exercise 1. A roulette coupon has face value $5. You can bet on red or black. You 
are required to bet an integer  b ≥ 5 of your money with the coupon. 
If you win, your payoff is  b + 5. If you lose, you lose b. You lose the coupon in 
both cases. What is the  value of the coupon and what is your optimal strategy?
Hint: your optimal strategy includes  a choice of  copayment b. The value. of a 
coupon is the value of game with the coupon.
Assume that the roulette is American .  

Remark. When you use coupons with your own money, your money are at risk 
even when expected payoff is positive. 
Can you avoid any risk? Yes, you can, for a small reduction in the expected 
payoff.
Here  is a way to  do it.  This way uses 2 coupons  and, when the coupon says 
“only one coupon per person,“ a  friend.
is needed.



You place a coupon and $5 on red and $1 on 0. Your friend  places  a coupon 
and $5 on black  and $1 on 00 for you.
So there are $12 of your money on table.
If the outcome is black or red, you get $15
so your net payoff  is $3.
  If it is green,
you get $36 so your net payoff  is $36 - $12 = $24.  

  Thus,  you payoff is always positive. 
Your expected payoff decreases by $2/19 in comparison with the bet with $2 on 
green  not placed.
The dealer would not like  this way because of confusion and cooperation.

Exercise 2. In the car and goats game, solve the game 
assuming that you value a goat as $900 and a car as $90.

Exercise 3. In blackjack, you have 20 hard, and dealers top 
card is 10. The remaining cards (including dealer's second 
card)  are  A and 10. Your bet is $100. Solve the game (find 
the value of game and an optimal strategy).

Exercise 4   To get only one card left in the shoe, we need many players. 
However their actions do not affect you, so it is still a one-player game. 
Usually, when  few cards left in  the shoe, (or dealer suspects card 
counting) the dealer add a new deck of 52 cards or a few decks.  In old times 
the used cards were used again. 

Assume that after the last card is taken from the shoe, the dealer add a new deck. 
Solve this game (see Exercise 3 above).  

Exercise 5. In the car and goats game, assume that there are 2 cars and 2 goats 
instead 1 car and 3 goats. So there are 4 doors Everything else  is the same.

Solve the game.



Exercise 6I In a game of Deal or No Deal, your are offered either quit and keep $100K 
or

choose of of remaining 5 cases.
You know that remaining 5 prizes are $10K, $10K, $20K, $30K,  $200, one in each 
(unknown) cases.
Solve the game (quit or open a case? what is the value of game?).

§2.  Two-player games
2.1. Tic-Tac-Toe:   thespruce || wiki || exploratori || play

2.2. Nim :|| wiki || toronto  ||   cornel  

An example       
 3   4   5   A starts
3    4  2    B
3  2  A  
2  2  B
1 2  A
1 1 B
1  A
0  B loses
   

Optimal strategy for two piles: make them even.  

————————————————W-F

2.3. Heads & Tails = Matching Pennies   1   |   2    | 3  ||  

2.4. Rock–paper–scissors  1  | |  2      |  3     ||
 

2.5.  1    Prisoner's dilemma wiki |  2   youtube   ||  3  Dibert  |   Encyclopedia of 
Philosophy|  |  

https://www.thespruce.com/tic-tac-toe-game-rules-412170
https://en.wikipedia.org/wiki/Tic-tac-toe
https://www.exploratorium.edu/brain_explorer/tictactoe.html
https://playtictactoe.org/
https://en.wikipedia.org/wiki/Nim
http://www.math.toronto.edu/mathnet/games/coingame.html
https://www.math.cornell.edu/~mec/2003-2004/graphtheory/nim/howtoplaynim.html
http://www.sciencenews.org/articles/20040228/mathtrek.asp
http://www.sciencenews.org/articles/20040228/fob2.asp
http://en.wikipedia.org/wiki/Heads_or_tails
http://en.wikipedia.org/wiki/Rock,_Paper,_Scissors
http://www.worldrps.com/
http://www.worldrps.com/gbasics.html
http://www.princeton.edu/%7Emdaniels/PD/PD.html
https://en.wikipedia.org/wiki/Prisoner%27s_dilemma
http://search.netscape.com/ns/boomframe.jsp?query=Prisoner%27s+Dilemma&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3D52dbe201c9c83c94%26clickedItemRank%3D1%26userQuery%3DPrisoner%2527s%2BDilemma%26clickedItemURN%3Dhttp%253A%252F%252Fen.wikipedia.org%252Fwiki%252FPrisoner%2527s_dilemma%26invocationType%3D-%26fromPage%3DNSCPResultsT%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPrisoner%2527s_dilemma
https://www.youtube.com/watch?v=t9Lo2fgxWHw
https://www.youtube.com/watch?v=t9Lo2fgxWHw
http://search.netscape.com/ns/boomframe.jsp?query=Prisoner%27s+Dilemma&page=1&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3D52dbe201c9c83c94%26clickedItemRank%3D5%26userQuery%3DPrisoner%2527s%2BDilemma%26clickedItemURN%3Dhttp%253A%252F%252Fserendip.brynmawr.edu%252Fplayground%252Fpd.html%26invocationType%3D-%26fromPage%3DNSCPResultsT%26amp%3BampTest%3D1&remove_url=http%3A%2F%2Fserendip.brynmawr.edu%2Fplayground%2Fpd.html
https://www.youtube.com/watch?v=ED9gaAb2BEw
https://www.youtube.com/watch?v=ED9gaAb2BEw
https://plato.stanford.edu/entries/prisoner-dilemma/
https://plato.stanford.edu/entries/prisoner-dilemma/


2.6. Battle of the Sexes. (see    wikipedia   and Battle of Buddies in  the 
textbook),

Exercises to §2

Exercise 1. Make your move in Nim in  the position:  1, 10, 
100, 1000  (4 piles).

Exercise 2 (bonus). Solve Tic-Tac-Toe (it takes about an hour 
and 10 pages).
If you do not use symmetry to reduce the number of 
positions and repeat positions to arrange them in a tree, it 
might  take thousands of pages.

Exercise 3 (bonus). A more general game then Tic-Tac-Toe  is 
played on  m by n board  and  line of  m is required to win. 
In  Tic-Tac-Toe, n = m = k = 3. The case when  m = n = 19 
and k = 5 is known as Go-Moku;
See   weijima.  Show that the second player has no winning strategy.

§3. Solving some games

Example 3.1. Game of Life. (Wikipedia). This is a zero-player game.

Example 3.2. Nim.

Optimal strategy: make the checksum  (aka Nim-sum) 0. In other words, replace a 
number by the checksum of all other numbers.
It may happen the the last checksum is bigger than the number.
We can chose the number which has 1 in the first (from the left) column with odd sum.

http://en.wikipedia.org/wiki/Battle_of_the_sexes_%28game_theory%29
http://www.weijima.com/index.php?option=com_content&view=article&id=11
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life


The solution for 3 piles was given in
Charles L. Bouton, Nim, A Game with a Complete Mathematical 
Theory,
Annals of Mathematics, Second Series, Vol. 3, No. 1/4 (1901 - 1902), 
pp. 35-39

3.3. How to solve Tic-Tac-Toe.

Draw all positions and connect them by moves. Use symmetry and do not repeat 
positions, so you can fit it to 10 pages.

3.4. Restricted Nim.

Example 3.4. In a movie, see

 http://www.youtube.com/watch?v=HkzMA1jrm00 
Austin Powers stands at 5 in Blackjack. Is it  possible that this is the 
only optimal move?
Here is an example. You have 5  and the dealer shows 10. Remaining 
cards are     6 and 6,  and 7.   Your bet is $1000.  Solve the game.
Solution.   If I stand at 5, the dealer gets 22, and I win. 
If I draw once, I end up with 11 and  the dealer ads a new deck 
or several new decks to the shoe and draws at 16. 
He wins  gets 1-5 and wins  with probability 5/13/ He  loses 
with probability 8/13.
My expected payoff is  $3K/13. It is not optimal.
Also I lose with a positive probability if I draw more than 
once.
So standing is the only optimal initial move.

Exercises to §3

Exercise 1. Restricted Nim. Players can take up to 9 stones in 

http://www.youtube.com/watch?v=HkzMA1jrm00


a move.
Initial position:   10, 25. 

Exercise 2. Nim but the last move loses. Initial position: 5, 
10.

Exercise 3.In American Roulette, you bet $6 on red, $3 on 
black, and $10 on square 2. What is your expected payoff?

Ch2.  Background

If you took Math 484 with me, you know this background.
You can read my textbook on linear programming in library.
You are supposed to know §4 stuff since elementary school
and  §§5,6 stuff from your class on linear algebra.
Here is a link to the manual for my textbook: ol2.pdf .
It has solutions to exercises in the textbook and much more.

§4. Logic

What the words "and" "or", and "if" mean?
This is a kindergarden level logic.
There are no definition in simpler terms, but there are 
explanations in other terms.

In the following examples x and y are real numbers.  It is OK if you assume that x and y 
are integers (to stay at elementary school level).

Here are true statements:
1 and 2 are positive. 2 and 1 are positive.
x ≥  0 means x = 0 or x > 0.
x ≥ 0 or x ≤ 0.   x ≤ 0 or x ≥ 0.

http://www.math.psu.edu/vstein/LPbook/sol2.pdf


If xy = 0, then x = 0 or y = 0. x = 0 or y = 0 if xy = 0.
xy > 0 if x > 0 and y > 0.    xy > 0 provided  that  x > 0 and y > 0. 
x = 2 only if  x ≥ 0.    x ÷ 0 if  x = 2.

If you are in State College, PA then you are in PA. Note that this implication is true even 
when you are not in State College.

Note that implication is not symmetric.  Here is an example of a relationship in real life 
which is not symmetric.
Alice loves Bob
is NOT the same as
Bob loves Alice.

implication is transitive.  Geometrically, if A is a part of B and B is a part of C, then  A is a 
part of C.

Both "and" and "or" are symmetric and transitive.

In terms of feasible sets,  a
and corresponds to intersection,
or  corresponds to  union,
and
if corresponds to  inclusion 
of sets.

The union of sets include both sets and, in particular, the intersection.
We use the inclusive or
So the set  x = 0 or y = 0 (cross) includes the origin.
Exclusive or (xor() is used rarely presently.
 Exclusive or in logic correspond to +, while "and" is the multiplication.

May you answer "both"  to the question"coffee or tea?"
It depends. If you flying the first class, certainly you can get both plus several bottles of 
champagne.
You can get it even before boarding the plane.
In other cases you may have to pay for extra drink.
I flew only commercial class this year, 4 times, 3 airlines.
In some cases, I got a few bottles of free beer, but in other cases I had to pay for every 
drink.

So in college logic,
A ⋁ B = A B + A  +B,   (A  ⇒ B) ≠  (B ⇒  A),    (B ⇒  A) =  (A ⇐  B),       A ⋀  B =  
AB = BA, and  A ⇒   A.
where  ⋀  = and = &,  ⋁ = or, + = xor,  and ⇒ = implies, so,thus., only if.  
Note that  "only if"  is the converse of "if."



If we have both, we may use  ⇔, "if and only if", iff, and "is equivalent to."

In Mother of All Games above, the player cannot take both $1 and $2.
But we can use mixed strategies, e.g., to decide where we go using a coin 
toss.
See 1.11 above.

We talk here about math logic.  Quantum logic , Fuzzy logic, and 
Dialectical logic
are  different. Also everyday logic can be different.
Suppose Alice says about Bob: "He is always late." 
Does it mean that  he is never on time? Probably, she means that  
he  is late very often.

In math, never means never. See the Black Sheep story above.
Male and female logic are topics or hashtags of many politically incorrect jokes and 
stories. 
 
When you became older, you realize than some stories for children are not quite true.
An example is the story about a stork delivering   you to your parents.
 Later you will realize that some stories for adults are not quite true.
This include several stories about games.

In modern English “or” is usually inclusive. A possible counter example is 
”Every entry includes a soup or salad.” For exclusive “or” (xor), we usually 
use “either 
… or” construction. Compare the following two statements about men in a 
town with one barber:
“Every man shaves himself or is shaved by a barber”
and
“Every man either shaves himself or is shaved by the barber” (Barber 
Paradox).

Here are several examples involving implications from my textbook on linear 
programming:
• x ≥ 0, because x ≥ 2. 
• x ≥ 0  if x ≥ 2.
• x ≥ 2 only if x ≥ 0
• If x ≥ 2, then x ≥ 0.

https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Quantum_logic
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Dialectical_logic


• The bound x ≥ 2 is sharper x ≥ 0.
• Given x ≥ 2, we conclude that x ≥ 0.
• The bound x ≥ 2 is better than x ≥ 0.
• The constraint x ≥ 0 is less tight than x ≥ 2.
• The bound x ≥ 2 is more precise than x ≥ 0.
• In the view of condition x ≥ 2, we have x ≥ 0.
• The constraint x ≥ 0 is less severe than x ≥ 2.
• The constraint x ≥ 0 is less strict than x ≥ 2.
• The condition x ≥ 2 implies the constraint x ≥ 0.
• The constraint x ≥ 0 is less stringent than x ≥ 2.
• The constraint x ≥ 0 is less demanding than x ≥ 2.
• The condition x ≥ 2 is sufficient to conclude that x ≥ 0.
• The linear constraint x ≥ 0 follows from the condition x ≥ 2.

Here are more examples:
• x ≥ 0 as long as x ≥ 2, 
• x ≥ 0 now that x ≥ 2,
•  x ≥ 0 whenever x ≥ 2, 
• x ≥ 0 once x ≥ 2,
• x ≥ 0 while x ≥ 2,
• x ≥ 0 as x ≥ 2,
• x ≥ 0 rather than x ≥ 2, 
• x ≥ 0 after x ≥ 2.

Bertrand Russell is the Pope

Remarks. stronger = sufficient. weaker = necessary.  stronger ⇒    weaker.

Exercises to §4.

Exercise 1.  True or false:
(A)  x  ≥ 0 if x = 2,
(B) x ≥ 0 if x > 2,
(C) x > 0 if  |x| >  2,
(D) |x| + y2 > 0 for all x and y.

Exercise 2. Find all true implications between the following 4 statements. 
(A) x = 0,
(B) x ≥ 0,
(C) xy = 0,
(D) x = y = 0.

http://www.nku.edu/%7Elonga/classes/mat385_resources/docs/russellpope.html


 Hint: it may help if you draw the feasible sets for A, B, C, and D    in  (x,y)-plane.
An implication is an inclusion of sets.
"And" corresponds to intersection. "Or" corresponds to union.

Exercise 3.  True or false:
(A) the equation x + y = 3 is redundant when  x = 1 and y = 2.
(B) the condition x > 1 is stronger than the condition  x = 0.
(C)  x = 1 only if   x ≥ 0,
(D) the condition  x  ≥  0 is sufficient for the conclusion  x = 1.

§5. Matrices
A matrix is a rectangle array. The entries are usually (known or unknown) numbers.

Matrix addition and subtraction  is defined for matrices of the same size.

The matrix productAB is defined for matrices A and B such that the number of columns of A 
equals to the number of rows of B.
If the sizes of A and B are  m by n and  n  by k, then AB has size  m by k and its entries are the 
matrix products of the m  rows of A with the k  columns of B.

The matrix product is not commutative, but to as associative: A(BC) = (AB)C where A,B, and C 
have appropriate sizes).

Matrix addition and multiplication are related by the distribution laws:
A(B+C) = AB + AC, (B+C)A = BA + CA.

Matrices can be multiplied by scalars (numbers}.

——————————W— F

Multiplication by elementary matrices on left and right  results  in row and column addition 
operations. 

Multiplication by diagonal matrices on left and right  results  in row and column multiplication  
operations. 

Multiplication by permutation matrices on left and right  results  in row and column permutation 
operations. 



Exercises to §5

                            ⎡ 0  ⎤
Let   A = [1,2,0],   B =    | -2  |
                            ⎣ 3  ⎦
Exercise 1. Compute  A + B  and 3A - 2B.

Exercise 2. Compute  AB  and BA.

Exercise 3. Compute   (BA)9.

§6.  Linear equations
We use the row addition and (invertible) multiplication  operations, and column 
multiplications with the augmented matrix. 
This does not change the solutions.
We drop  zero rows 
in the augmented matrix (they correspond to the redundant equation 0 = 0).
We either create the equation 0 = 1 (in which case the system is inconsistent, i.r., has 
no solutions) or  obtain the identity matrix on the left (in which case we are done too).

Examples.

6.1. Solve    3x + 1 = 2 - x for  x. Answer: x = 1/4.

6.2. Solve 2x + 3y = 1  for x, y.
Answer: x = 1/2 -3x/2   (y arbitrary) or  y = 1/3 -2x/3  (x is arbitrary).

6.3  Solve  the system   x - y = 1, 2x - 2y = 3 for x, y. 
Answer : 0 = 1 (there are no solutions.

6.4.Solve  the system  2x + 3y = 1, 4x  + 6y = 2 for x, y. 
Answer : the same as in  6.2.

6.5. Solve for x, y:

⎛ 3x + 2y = 5
⎨
⎝8x + 5y = 13



⎨
⎝8x + 5y = 13
Solution. The augmented matrix is
3 2  5
8 5 13

We multiply the first row by 1/3 and obtain

1 2/3 5/3
8    5  13

We add the   first row multiplied by -8 to the second row which gives

1  2/3   5/3
0  -1/3 -1/3

We multiply the second  row by  -3   and obtain
1 2/3 5/3
0   1    1

We add the second row multiplied by -2/3 to the first row which gives
1 0 1
0 1 1

So by 2  row addition operations and two row multiplication operations we obtain a 
terminal matrix hence
x = 1 and y = 1.

Notice that  the numbers  in the data and answer  are in integers. But the augmented 
matrices on the way from the initial matrix to the terminal matrix contain 
fractions and even a negative number.  Examples like this can be found in  circa 2K old 
Chinese texts.
By comparison,  negative numbers appeared in European texts only in  the 17th century, 
see wiki. Fractions were known in Egypt circa 3K ago, see wiki.

Given any linear system,  we can write it in the matrix form  Ax = b, where  [A,b] is the 
augmented matrix of size m by n+1 and  x  is the column of distinct  (names of) 
unknowns.  
Solving it results in one of the following outcomes:

0 = 0  (every x is a solution; this happens  if and only if [A,b]  =  0, the zero matrix);

0 = 1 (there are no solutions);

https://en.wikipedia.org/wiki/Negative_number
https://en.wikipedia.org/wiki/Fraction_(mathematics)#History


x = d  (exactly one solution);

y = Cz + d where   the column

y
z

consists of all  n  unknowns (i.e., it is the column  x permuted),  y contains at least one 
unknown and  z   contains at least one unknown.

The corresponding terminal augmented matrices are:
the  1 by n +1 zero matrix,
the  1 by n + 1 matrix [0, 1],
the m  by n + 1 matrix  [1m, d],
the k  by n + 1 matrix  
yT     zT
[1k, -C, d]
where   1 ≤ k ≤ n - 1.

We obtain a terminal matrix starting from [A,b] by the  following operations:

row addition  operations,
row multiplication  operations (with nonzero coefficients)
column permutations (columns permuted together with the names of unknowns on the 
top margin),
dropping redundant rows (a row is redundant if is either the zero row or any row in 
presence of the row [0, 1]).

Exercises to §6

1. Solve the following system for x,y:

⎛ x + 2y = 3
⎨
⎝4x + 5y = 6

2. Solve the following system for x,y:

⎛ x + 2y = 3
⎨
⎝2x + ay = b



⎨
⎝2x + ay = b

where  a  and  b  are  given numbers.

Hint: division by 0 is not allowed.

Ch3.  Definition of game
§7.   Graphs (networks). Extensive form. Strategy  

7.1. Definition. A graph (or network}  is a set (of vertices or nodes) and 
a set of pairs of vertices (arrow or links).
For an arrow (a,b)  we say it goes from a to b or connect  a  with b. 
We also say that (a,b) is a link from  the source a to the target  b.

In a more general definition, which  we do not need, arrows (links) can 
be repeated. Here are some conditions which sometimes imposed.
Graph is finite, i.e., the set of vertices is finite (then the set of arrows is 
finite too).
Graph is undirected, i.e., when (a,b) is an arrow then (b,a) is an arrow.
Graph has no arrows (a,a).
Graphs is connected.
Graph has no loops.
Graph is a tree, i.e., it is connected and has no loops. (Examples of 
trees.)

7.2. Definition. A terminal vertex (node) is a vertex without arrows out.
7.3. Definition. A game in extensive form  consists of:
a finite set (of players);
a finite graph (vertices are called positions and the arrows are called moves);
a number (payoff) for every player at each terminal  position;



every non-terminal position is marked by either a player or by "nature" (or "chance");
at every chance position, on all  moves out, non-negative numbers with sum 1 are written; 
a position selected as the initial position.

In most of textbooks, the graph in extensive form is assume to be a tree. Then every position remembers 
its history.
This assumption  makes some theoretical results easer to obtain, but  it makes practical solution of 
games (such as 
blackjack,  Tc-tac-toe, Nim) more difficult.

Our  definition  is for so-called games with perfect information. A more general definition  involves 
information sets which allows us  to include games like Heads&Tails and Scissors-Rock-Paper. However 
the extensive form for such games is not useful.

Moreover it is possible to generalize the definition of game in a way to include practically every situation 
in every science and life. But then the game theory  loses its  usefulness.

7.4. Some  examples of games above can be easily written in extensive form.
Game of Life is a 0-player game if we drop the condition that the graph is finite or consider only initial 
positions such that the life disappears after a few steps.
However without this condition we have trouble in defining the payoffs
in games like Double or Nothing.
|| youtube 1    |     youtube 2 ||  

7.5. A strategy for a player  P  consists of  P  choosing a move in 
every position which belongs to P. 
A strategy profile  or joint strategy  (or just a strategy ) consists of a 
strategy for each player.

Here is a tricky question which only a mathematician can understand. 
Suppose that  there are no positions which belong to a player P. Haw 
many strategies  P has?
Answer: 1 (do nothing).

7.6.  Definition. We call a game in extensive form  finite    if  the 
underlying graph is finite and there is a number N such that game 
terminates  in at most N moves. E.g.,  every game on a finite  tree is 
finite. 
More generally (when our graph is finite) ,  a game in extensive form is   
finite  if there are no directed loops, i.e., the graph is acyclic. . This is 
because the game is over in ≤ N moves where  N is the number of 
positions.
On the other hand, is we have a directed loop and the initial position is 

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DE8kUJL04ELA&data=02%7C01%7Clxv1%40psu.edu%7Cd2de4ca687e74618936508d6331437b4%7C7cf48d453ddb4389a9c1c115526eb52e%7C0%7C0%7C636752559261597425&sdata=3Fnl0vFF1SijDEhdvI85Yq40dTSPiMK37S1u1T2ACo0%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DR9Plq-D1gEk&data=02%7C01%7Clxv1%40psu.edu%7Cd2de4ca687e74618936508d6331437b4%7C7cf48d453ddb4389a9c1c115526eb52e%7C0%7C0%7C636752559261597425&sdata=INbQ2ltUr7mRJr8U8AXvPS14fLylKlRk848Kr180YyI%3D&reserved=0


on the loop, the game may continue forever.

7.7.   Payoff for a joint strategy.
In ay extensive form, the payoff is given for every terminal position. Is 
it always possible to assign a payoff for every joint strategy (strategy 
profile)?
(We assume that there s at least one player.)
Here is a counterexample with an infinite graph. Consider an 
extensive form with one player, one initial chance position, and the 
terminal positions numbered by integer  n ≥ 1.
Let probability of going from the initial position to the terminal position  
n be 1/2n. Let the payoff t  n be 2n.
Then the expected payoff is an infinite  sum of ones which is not a 
number.

Nere are some conditions on the game which guarantee the existence 
of payoffs for all joint strategies.

Given a strategy profile in a finite game, we obtain a probability 
distribution on the terminal position hence the expected payoff for 
each player.

More generally, given any game in extensive form such 
that the payoff of each player is bounded and any joint 
stately (strategy profile)
there is a probability of ending at each terminal position. 
The sum of probabilities is ≤ 1. The sum  could be less 
than 1 — it is possible that we never terminate.Then we 
compute the expected payoff (if we never terminate, the 
payoff for each player is 0) .



An example when the payoffs are bounded is the case 
when the set of terminal positions is finite.

If there are no chance positions or, more generally, the 
probability of every chance move is 0 or 1, then  for any 
joint strategy, we have an unique path of moves starting at 
the initial position.
If the path terminates, we have the payoff for the joint 
strategy. Otherwise we can assign the payoff 0 for each 
player.

7.8. Example. Here is an extensive form with:
2 players, A and B,
a chance position marked N,
and 5 terminal positions.    

                    A
          A1  /        \ A2
             A               B
      A3  /   \ A4    / B1    \ B2
        1,2         3,4             N
                              0.3/  0.2|   \0.5
                             0,1      -1,1     2,-2

All arrows go down.
The player A has 4 strategies: (A1, A3), (A1,  A4),  (A2, A3),  and 
(A2, A4), 
(We may say that the last two strategies are nor really so 



different.)
The player B has 2 strategies: B1 and B2.
There are 8 = 4× 2  strategy profiles (joint strategies). 
If A chooses  (A1, A3), and  B chooses  anything, then the payoff   
is (1,2).
For the strategy profile   (A2, B2), the (expected) payoff is
0.3(0, 1) + 0.2(-1, 1) + 0.5(2, -2) = (0.8, -.0.5).

Which strategy profile we call a solution? 
A good candidate is  ((A1, A4) , B2) where each player 
gets the  maximal possible payoff.
Some would say this is the solution of game assuming that 
A is rational.
But what if A demands the side payment 1 threading to 
choose (A1, A3)? 
Should   B believe that A is capable to do it and pay the 
damson (bribe}? 
The answer depends on whether players are allowed to 
communicate and whether side payments  are allowed.
On the other hand, if A chooses A2,  then   player  B has 
an opportunity to blackmail A.

Exercises to §7

Exercise 1.  Solve the  1-player game in extensive form 

                      A
               /              \ 
             N                  N
      0.5  /   \ 0.5    / 0.6    \ 0.4



        1             2                     N
                                    0.3/  0.2|    \0.5
                                     1         3         2

Exercise 2.  Solve restricted Nim;: 2,3, or 5 stones in a move. Initial position: 1000 
stones in a pile.

Exercise 3. In Blackjack, your bet is $1, you stand at 18,   the dealer got hard 16 in 
two  cards. and you know nothing about remaining cards (many cards in the 
shoe). What is your expected payoff?

§8. Normal (strategic) form. Equilibrium

8.1. Normal  (strategic) form  consists of
a  set (of players);
a nonempty set (of strategies) for each player;
a number (payoff) for each player for each joint strategy.

8.2. Going from finite  extensive form to normal form. See 7.7 above.

Examples, Heads&Tails, Rock-Scissors-Paper, Prisoner's Dilemma,  and Battle 
of Sexes above are 2-player games in normal form. 
More generally, normal form with 2 player and finitely many strategies for each is 
the same as bimatrix (or bi-matrix)  game, given by two matrices (payoffs for the 
first and the second players) or a matrix  where every entry is a pair of numbers.

The zero-sum bimatrix games are known as matrix games. We will study them in 
detail later. 
When the payoff matrix has only one row or only one column, it can be 
considered as  an one-player game.



8.3. Definition. An equilibrium is a strategy profile such that no player can 
improve his (her, its,…) payoff by a unilateral change.

For any 1-player game an equilibrium is the same as an optimal strategy. So  
solving a game means to find an equilibrium and the value of game (if they exist).

If there is only one strategy profile (e.g., no position belongs to any player or, 
more generally, every position which belongs to a player has 
only one move out), then this profile is an equilibrium.

For  any 2-player 0-sum game, an equilibrium(if it exists)  together with  the value 
of game is the answer to "solve the game." 
This is also true for  all  2-player constant-sum games

For other games (not 1-player game or 2-player constant-sum game) , an 
equilibrium is not an answer which  makes everybody happy.
Cooperation, side payments,  coalitions, and threats may result  in  different 
solutions.
Some authors   call players looking for equilibria "rational." 
Then our parents were irrational. If you against any cooperations, you think 
that everybody is agains you and your life is probably miserable.

Example. 8.4.  Find all equilibria in the bimatrix game
Players R, C C1 C2 C3 C4
R1 5, 3  0,2 0, -2 0, 3
R2 1, 0 0, 0 0, 0 0, 0
R3 2, 2 -1, 0 4, 6 1, 1

Solution. We mark by  * maximal entries in every row and column:

Players R, C C1 C2 C3 C4
R1 5*, 3*  0*,2 0, -2 0, 3*
R2 1, 0* 0*, 0* 0, 0* 0, 0*
R3 2, 2 -1, 0 4*, 6* 1*, 1



Players R, C C1 C2 C3 C4
R1 5*, 3*  0*,2 0, -2 0, 3*
R2 1, 0* 0*, 0* 0, 0* 0, 0*
R3 2, 2 -1, 0 4*, 6* 1*, 1

Positions marked twice are equilibria. There are  3 of them, 
namely, (R1, C1), (R2, C2),  and (R3, C3).
Does any of them solve the game?

8.4.  A philosophical issue. What is infinity and does in exists in nature?
This is a deep  philosophical  question. See Infinity - Wikipedia/

The space-time is infinite in most of current  physical theories. In mathematics, 
we have infinitely many natural numbers.
There many infinite sets and procedures in calculus.
On the other hand, every digital computer has a finite memory, so practical   
numerical computations are done in finite space-time.
The number of all elementary particles in the universe is estimated to be finite. 
See Eddington number

Example 8.5.   Here is a 2 -player extensive form 
with 5 positions:
 
                                                     
N initial
                                                    
↙         ↘︎
                                             
0.5   ↙           ↘︎   0.5
                                                  ↙     left     ↘︎     
                                             
Player1    ⇆⇆⇆  Player 2
                                                  
↓    right     ↓
                                                  
↓              ↓                                      

https://en.wikipedia.org/wiki/Infinity
https://en.wikipedia.org/wiki/Eddington_number


↓              ↓                                      
                                               
(-1,3)         (-3, 1)

Here is the normal form (bimatrix game):

          left            down
right    0, 0           -3, 1

down    -1, 3           -2, 2

There is no equilibria in pure strategies. The 
number of moves is not bounded, so the 
extensive form is not finite (cf., Definition 7.6). 
because there is a directed loop. The payoff is 
(0,0) when we do not termnate.
Compare with 9.1 below.

Exercises to §8

Exercise 1. Find all equilibria in the game with 2 players, A 
and B:

         A
    ↙  ↓  ↘︎
0,-1  0,0   0,1



Exercise 2. Restricted Nim. The number of stones taken should be 1, 4, or 5. The 
initial position is one pile of 1000 stones. Solve the game.

§9. Equilibrium/ Its existence  for finite extensive form with 
perfect information

 Every finite game in extensive form has an equilibrium.

9.1. Finding the equilibrium in finite extensive forms. Dynamical programming 
(backward induction)  finds equilibria  for all initial positions.
We start with the terminal positions where the answer is given. Then we work with 
positions one move away from the terminal positions.
If such a position belongs to Nature, we just compute the expected payoff. If it belongs 
to a player, the player goes for maximal payoff.
Then we process the positions two moves away from the terminal positions. And so on.

Every equilibrium we find is subgame perfect, i.e., if  restricted to any  initial position, it 
gives an equilibrium for the corresponding subgame. 
Conversely, every subgame perfect equilibrium can be found by dynamical 
programming. However finding more than one equilibrium can be useful only as 
exercise or showing that equilibrium 
is not the answer (except for 1-player or 2-player 0-sum games).

Example. In Nim (or, more generally, in any win-lose  deterministic  
finite game in extensive form), an equilibrium  exists and it consists of 
a winning strategy for a player combined with an arbitrary strategy for 
the other player/

Example. Find all  equilibria in the extensive form with 2 players, A 
and B

              B   → 1, 2
         ↗       ↘︎        
A  (initial)   →   0, 0       



       ↘︎        ↗
                B  → 3, 2
               ↓
            4, 2

Solution. We mark  5 moves of B from top down as B1, B2, B3, 
B4, and B5.  Only B1, B4, and B5  maximizes B's payoff. However 
B2 and B3 can be a part of  an equilibria if they are irrelevant  do 
not change the terminal position).
B has 6 strategies.
We mark 3 moves by A  from top down as A1, A2,  and A3.

              B   → 1, 2       B1
         ↗       ↘︎             A1  B2
A  (initial)   →   0, 0       A2
       ↘︎        ↗           A3  B3
                B  → 3, 2      B4
               ↓                  B5
            4, 2      

Here I wrote at the terminal positions the pathways to 
reach them:
              B   → 1, 2     A1, B1 (B3,B4,B5 irrelevant), 
         ↗       ↘︎        
A  (initial)   →   0, 0    A1, B2   (B3,B4,B5 irrelevant),      A2 
(B1-5 irrelevant)   or A3 B3 (B1,B2 irrelevant)
       ↘︎        ↗
                B  → 3, 2     A3, B4   (B1, B2 irrelevant)
               ↓
            4, 2                  A3, B5 (B1, B2 irrelevant)



Here is the normal form

B1,B3 B1,B4 B1,B5 B2,B3 B2,B4 B2,B5
A1 1,2 1,2 1,2 0,0 0,0 0,0
A2 0,0 0,0 0,0 0,0 0,0 0,0
A3 0,0 3,2 4,2 0,0 3,2 4,2

Now we mark by * maximal entries:
B1,B3 B1,B4 B1,B5 B2,B3 B2,B4 B2,B5

A1 1*,2* 1,2* 1,2* 0*,0 0,0 0,0
A2 0,0* 0,0* 0,0* 0,*0* 0,0* 0,0*
A3 0,0 3*,2* 4*,2* 0*,0 3*,2* 4*,2*

The equilibria are the positions in the table marked twice. There are 6 
of them.
Point of this example are to practice:
 going from extensive form to normal form
and
finding all equilibria in bimatrix game;
Another point is to see again that an equilibrium or all equilibria in a 
bimatrix game do not give an answer which make everybody happy 
unless it is a matrix game.
Also equilibria which are not subgame perfect look ugly.



Equilibria for 2-player 0-sum games.

For these games, the equilibrium (if exists)  have special properties, 
so an equilibrium (and the corresponding payoff) solves the game.
Consider a  2-player 0-sum game. Call the players He and She. His  
payoff plus her payoff is always 0.

9.2. At all equilibria, his payoff is the same,  Indeed, consider two 
equilibria (R1, C1) and (R2, C2) where  R1and R2 are his strategies 
and C1 and C2 are her strategies. Consider his payoffs:
        C1   C2
R1     a      b
R2     c     d

Since (R1, C1) is an equilibrium, a ≥ c  and a ≤ b.
Since (R2, C2) is an equilibrium, d ≥ b  and  d  ≤ c.
So a ≥   c ≥   d ≥  b ≥  a, hence  a = c =  d = b and a =d, QED.

For bimatrix game, the payoffs at  equilibria can be different  see   
Battle of Sexes.

9.3. If  (R1, C1) and (R2, C2)  are equilibria, then    (R1, C2) and (R2, 
C1)  are equilibria then so are (R1, C2!) and (R2, C1).

Consider his payoffs:
       C1   C2
R1   a      b
R2    c     d

As in the proof of 9.2, we obtain a = b = c = d.
Since  (R1, C1)  is an equilibrium, he cannot increase  a in R1, hence 
he cannot improve c = a in R2.
Since  (R2, C2!)  is an equilibrium, she cannot decrease his payoff  d 
in C2, hence she cannot improve c = d in C1.
So  (R2, C1) is an equilibrium. Similarly,  (R1, C2) is an equilibrium. 



9.4. If his strategy is a part of an equilibrium, it is optimal in the 
following sense: it maximizes his worst-case payoff. 
Indeed, consider any equilibrium (R1, C1) and any his strategy  R2.
Consider her  best  strategy C2 against R2. Consider the 
corresponding payoffs:

       C1   C2
R1    a      b
R2    c     d

Since   (R1, C1) is an equilibrium,  a  is the worst-case payoff for R1 
and a ≥ c.
We have chosen C2 such that  d is  his worst-case payoff for R2., 
hence c ≥ d.
So  a ≥ c ≥ d, hence  a ≥ d, QED.

9.5. If her  strategy is a part of an equilibrium, it is optimal in the 
following sense: it maximizes her worst-case payoff. 
Switching players in a 2-player 0-sum game (with switching strategies 
and payoffs) give a 2-player 0-sum game

9.6. If there is an equilibrium, then (C2, R2) is also an equilibrium 
whenever R2 is optimal for him and C2 is optimal for her.
Indeed, let (R1, C1) is an equilibrium.  Consider his payoffs:
        C1   C2
R1     a      b
R2     c     d

Since (R1, C1) is an equilibrium, a ≥ c  and a ≤ b.
On the other hand, c. d  ≥ the worst-case payoff for R2
while   a   is the worst cease payoff for R1. Since R2 is optimal,  
the worst-case payoff for R2 ≥ a.  
hence c. d  ≥ a. So a = c ≤ b. d. 
Similarly, since C2 is optimal, 



-b, -d ≥ the worst-case  payoff for  C2 ≥   the worst-case  payoff for  C1 
= -a.
hence  b,d ≤ a and a = b ≥ c,  d. Therefore a = b = c = d.
Thus, d =   the worst-case   (minima;) payoff for  R2
and 
-d =   the worst-case  (minimal) payoff for  C2.
i.e., (R2,C2) is an equilibrium/

9.7. Let  R1 be an optimal strategy and u the minimal payoff for R1. So u is the 
maximal worst-case payoff  for him.
Let  C1 is her optimal strategy and -v is her maximal payoff for R1, so  she pays 
him at most v when she uses C1 and -v is her worst case payoff.
Then   u ≤ v. 
Indeed, let  C2 is her worst case response to  his R1 and R2 is his worst-case 
response to her C12/ Consider his payoffs

      C1  C2
R1   a      u
R2   v      d.

Then   a  ≥  u   and  a ≤ v  hence  u ≤ v.

9.8. Let   R1,C1, u, v be as  in 9.7.    If u = v, then  (R1, C1) is an 
equilibrium. 
Consider his payoff x for R1 against C1. As in 9.5,   u ≤ x ≤  v.  Since u 
= v, we have u = x = v.
So x  is the minimal payoff for R1 and  -x is the minimal payoff for C1, 
i.e., (R1, C1) is an equilibrium. 

9.9.  Let   R1,C1, u, v be as  in 9.7.     If u ≠  v, then there is no 
equilibrium.
It follows  from 9.6.

9.10. Thus, for 2-player 0-sum games,  the equilibrium exists if and 



only if 
his  maxima; the worst case payoff  = - her maximal  worst-case 
payoff.
J. von Neumann proved  the existence of an equilibrium in mixed 
strategies for every matrix game (the minimax theorem, see below).
The example of Heads&Tails shows that matrix games need not to 
have equilibria in pure strategies.
Such games cannot be written in extensive forms (with perfect 
information).

9.11. Any mixture of his optimal  strategies is optimal. Any mixture of 
her optimal  strategies is optimal.

9.12. An example. In the bimatrix game,

1,5  2, 5  3, 5
1,9  2, 9   3,9

each of 6 joint strategies is an equilibrium.
So which of them is the non-cooperative "solution"?

Exercises to §9

Exercise 1. Find an equilibrium  and the corresponding payoff for extensive form 
with 3 players, A, B, C:

                                             A

                                /              |                \

                        B                   N                        C

                /          \        0.5   /     \ 0.5           /    |     \

-1,0,0                      1,1,-1                 3,3,3   0,0,0    0,0,5      

  



Exercise 2. How many equilibrate are there for the extensive form with 3 players, 
A, B, C:

                                             A

                                /              |                \

                        B                   A                        C

                   /          \            /     \                    /    |     \

              0,0,0          1,0,2               1,1,1        0,0,1    3,2,1

Exercise 3. In American Roulette, you start with $1 bet and use Double or Nothing 
until you either win or your bet exceed $100. Compute your expected payoff. You 
bet on red.

Remark. I met several students and even experts on game theory who 
believed that solving any game is about finding an equilibrium. They are 
right if it is a 1-player game or 2-player 0-sum game (the complete answer 
should include also the value of game). Otherwise, they are wrong. Any 
game which is not a 1-player game or 2-player  constant-sum game shows 
this. See, for example, Prisoner's Dilemma (where the equilibrium is 
unique)  or Battle of Sexes (where there are equilibria with different 
payoffs). 

Often experts are wrong. Most of experts were wrong about the last US presidential 
elections. 
All experts were wrong giving stress as the reason for stomach ulcers. Many  Nobel 
Prize are about somebody refuting the experts.
It is also possible that the experts giving out Nobel Prizes are sometimes wrong.

I gave the following 2 exercises  as a part   of a special final exam for my Math 486  
student  V. Lemin. He got A.
They are difficult even for experts on game theory. 
Do not upload your solutions of bonus problems  to Canvas but report them in class.



Exercise 4. (bonus) Construct an extensive form with finite graph without equilibria.

Exercise  5 (bonus). Prove that any extensive form with finite graph without chance 
moves has an equilibrium. 
When a strategy profile results in cycling rather than a terminal position, assign 0 payoff 
for each player.

An English issue. A solution of an equation is a set of values for unknowns satisfying the 
equations.
A solution for a problem is a way to solve the problem (to get an answer).
Later we will see feasible solutions, optimal solutions, and basic solutions.
Solutions in chemistry are something else.
   On the other hand, mixture in math and chemistry are  in harmony with each other.

E.g., typical vodka, whisky, gin,  or brandy is a mixture,  namely, 40% of ethanol + 60% 
of water. 
(The flavors, colors, and poisons — less than 1%— not shown in contents.)

Any 2-player constant-sum game can be reduced to  2-player 0-sum game by 
subtracting the half sum of payoffs for the payoffs of both players. 
Therefore all nice properties of equilibria and optimal strategies can be extended to  2-
player constant-sum games.

If you want to find an equilibrium in an extensive form, use dynamical programming rather than 
normal form.
However  dynamical programming not always gives all equilibria.

Ch4. Matrix games

§10. Definition. Mixed strategies. 

10.1. A matrix game is a 2-player 0-sum game in normal form with finitely 
many strategies.
In other words, it is given by an arbitrary matrix (payoff matrix  for the first 
player),
The first player choses a row and  the second player chooses a column   



(row  and column players).
The corresponding  matrix entry is what the second player pays to the first 
player.

10.2. A mixed strategy for a player P s a probability distribution on  P's 
original (pure) strategies, or a mixture of P's original (mixed) 
strategies.

10.3. For example in Heads&Tails,

He vs She H T
H 1 -1
T -1 1

we  see no equilibria. However if he uses (H+T)/2 and she uses  (H
+T)/2 , we get an equilibrium

He vs She H T  (H+T)/2
H 1 -1 0*
T -1 1 0*

 (H+T)/2 0∆ 0∆

0*

where * means that his payoff is maximal in its column  and ∆  means 
that his payoff is minimal in its row (i.e.,  her payoff is maximal).

It is the only equilibrium in mixed strategies.  In other words, if he uses 
any other mixed strategy his worst-case payoff will be negative and 
the same is true for her.



The value if game is 0.

10.4. If the payoff matrix has only one column, he (the row player) 
choses a maximal number. The number is the value of game. Its 
position is an equilibrium.

 If the payoff matrix has only one row, she (the row player) choses a 
minimal number (to pay him). The number is the value of game. Its 
position is an equilibrium.

10.5. Graphical method. If  the payoff matrix has only two rows or  columns,  the matrix 
game can be solved graphically.
There are many videos at web about this.
Here are examples from youtube:
Game Theory 2x3 graphical solution AQA Game Theory graphical method
Graphic Method of game theory by jolly coaching in hindi(GAME THEORY USING 
GRAPHIC METHOD)
Game theory graphical method
Finding Saddle Points

10.6.  Domination.  We say that a strategy S1  of a player P  
dominates a strategy S2 of P if  S1 pays more or the same as S2 
always.
For example. for a 2 by 5 matrix game

S1   1  1  0  3  0
S2   0  0  0  3 -1

S1  dominates S2,  written as  S2  ⧼  S1.

For a matrix game

S1   S2

https://www.youtube.com/watch?v=Bnhd_IiKJ6w
https://www.youtube.com/watch?v=TAfbLJdx48A
https://www.youtube.com/watch?v=TAfbLJdx48A
https://www.youtube.com/watch?v=Ze7YWRsQO6k
https://www.youtube.com/watch?v=CyrzncVBejE


 0    1
 0    0
-2    0 

we have    S2  ⧼   S1 (remember the matrix entries is what the second player pays to the first one.

When we look for an equilibrium (like for matrix games), domination can be used to 
reduce the size of problem.
 For matrix games rows and columns which are dominated can be crossed out

For example, for 2 by 3 matrix game

      C1  C2  C3
 R1    1  -1   2
 R2   -1   1  -1

 C3 ⧼  C1. After crossing C3, we get a game we saw before.
So an equilibrium is  (R1 + R2)/2, (C1+C2)/2) and the 
value is 0 for both games.

For any game, if we look for an equilibrium, strategies which are dominated can be 
eliminated.

But domination is not always there to help us. Also we not always interested in 
equilibria in which case it not OK to eliminate strategies which are dominated.

When we are looking for an equilibrium in extensive form by dynamical programming 
(backward induction), we discard some moves by domination. 
We may lose some equilibria including all equilibria which are not subgame perfect.

For any 1-player game,
a strategy dominates any other strategy if and only if it is optimal,
a strategy is not optimal if and only if it is strictly dominated by another strategy.

For Heads&Tails, no mixed strategy is dominated by a different mixed strategy.

For any finite extensive form, any non optimal strategy is dominated by a different 



strategy. So elimination by domination allows us to find an equilibrium in pure 
strategies.

 

Philosophical issue.  Domination is closely related with 

concept of "rational player." Some books  give 

"rational interpretation" of equilibria and domination  
They claim that a rational player 
 would necessarily have to pick an equilibrium as the 
solution of each game. But then they  have to deal with  
"rationality paradox." 
We do not define or use the concept of "rational player."
Cooperation is not irrational. We call   player irrational if 
we do not like or understand them. This is not a 
mathematical definition.
Is this crocodile  mom rational?  Crocodile Mom Scoops Up Babies in Mouth

Are these penguin  dads rational? Baby Emperor Penguins Emerge from Their Shells 
| Nature on PBS

Is rationality consistent with altruism?

10.7. Symmetry.  If the payoff matrix  M is skew-symmetric , i.e., MT = -M, the game is called 
symmetric. If we switch the players and payoffs, the matrix stay the same.

The value of any symmetric matrix game is 0 and   optimal strategies of the players are the 
same up to transposition.

So it suffices to find am optimal strategy for the first player.  

Every m by n matrix game can be reduced to a symmetric  mn  by  mn game (von Neumann) 
and even to a symmetric  m + n + 1  by  m + n + 1 game.

https://www.youtube.com/watch?v=rvjDcbLtU5I
https://www.youtube.com/watch?v=k0u67Wk_hJ0
https://www.youtube.com/watch?v=k0u67Wk_hJ0


10.8.  Strict domination.  We say that a strategy S1  of a player P  
strictly dominates a strategy S2 of P if  S1 pays more  than  S2 
always.
Then S2 cannot be present in any equilibrium (even as a part of a 
mixed strategy).

 
Exercises to §10.
Exercise 1.  In the matrix game with the payoff matrix M =

1 2 3 0 -1
3 -2 0 2 0
-1 1 0 0 0
1 2 -3 -1 1

compute his (row player)  payoff  for   her (column player) strategies
S1 = [1,1,1,1,1]/5
and
S2 = [0,0,0,1,1]/2.
Which is better in the sense of the worst-case payoff?

Exercise 2.  Solve the matrix game

1  3   -1     4    3

6  0   3    -2    0

0 0    -1     3    4.

Hint. Reduce size by domination and then use the graphical method.

Exercise 3 (bonus)  Solve the matrix game

1  3  2
4  1  2
1  2  4

We worked  on this problem in a class on Tue. It was easy to get approximate solutions.
We also reduced the problem to linear programming.



§11. Optimal strategies. The minimax theorem.

To solve a matrix game is to find an equilibrium and the corresponding 
payoff for the row player.
A mixed strategy is optimal if it maximizes the worst-case payoff (the 
maximization is over all mixed strategies).  
This happens if and only if it is a part of equilibrium.

J. von Neumann proved that every matrix game has an equilibrium in 
mixed strategies.
John Nash proved that every finite normal form has  an equilibrium in 
mixed strategies.

Reduction of solving matrix games to linear programming.

Exercises to §11.

Exercise 1.  In the matrix gave with the payoff matrix

1 2 3 0 -1
3 2 0 0 0
-1 1 0 0 0
1 2 -3 -1 1

find all equilibria (saddle points) in pure strategies.

Exercise 2.  Is S1 or S2  in Exercise 1 of  §10 optimal?

§12.  Examples.

Simplex method allows us to solve any matrix game (after reducing it 
to linear programming. We study linear programming and  simplex 
method in the next 2 chapters. 
It will be easier for students who took Math 484. 



You have to know: what is a linear equation, what it means to solve it, and how to solve 
any system of linear equations
(This is a quote from Syllabus/Prerequisites.)
We reviewed this in class (see §6  above).

Here are some examples where matrix game can be solved without 
simplex method.

Example 12.1. Solve the matrix game
1 2 3 4 1 1
5 4 3 2 0 1
0 2 0 1 1 1

Solution. We mark maxima entries in columns by * and minimal 
entries in rows by ∆∆:   
1∆   2  3*  4**  1*∆ 1*∆
5*  4*  3*  2   0∆   1*
0∆   2  0∆  1   1*   1*
There are two equilibria in pure strategies: row 1, columns  5 and 6.
The value of game is 1.
Any mixture of equilibria in any matrix game is an equilibrium/

Example 12.2. Solve the matrix game
2 0
0 2

Solution. Subtracting 1 from each entry, we get Heads&Tails, with  the 
value  0.
For the original game, the value is 1. The equilibria are the same for 
both games.

Example 12.3. Solve the matrix game
3 2 0  0
1 0 2  3
0  2 0-1



Solution. We name strategies:
     C1 C2 C3 C4
R1  3   2    0    0
R2  1   0    2    3
R3  0   2    0   -1

R3 is dominated by R1 so we eliminate it:
     C1 C2 C3 C4
R1  3   2    0    0
R2  1   0    2    3
Now C1 is dominated by C2 and C4 is dominated by C3:
       C2 C3  
R1   2    0   
R2   0    2   

We saw this game in Example 12.2. The equilibrium is
((R1 + R2)/2, (C2+C3)/2) and the value is 1 The same answer works 
for the original 3 by 4 matrix game.

Example 12.4. Solve the matrix game
2 6
5  1
Solution. This can be easily done by graphical method. We name 
strategies:
     C1 C2
R1  2   6
R2  5   1
We use slopes. 
The equilibrium is  ((R1 + R2)/2, (5C1 + 3C2)/8). and the value of 
game is 3.5.



Exercises to §12.

Exercise 1. Solve the matrix game

1 2 0 4 1 1  0 0  
5 4 0 2 0 1  1  2
0 2 0 1 2 3  0  1

Exercise 2. Solve the matrix game
3   2   1
1  2  3

Exercise 3. Solve the matrix game
3   0  
0  3 
2  2

Ch 5, Linear. programming

§13,  Definitions.  Little tricks.

Terminology of optimization.  
A number in our class is a real number unless said otherwise. Here are 
examples of numbers
0, 1, -1,1/2, -0.2. Concept of real numbers is complicated, but linear 
programming and most of game theory can be done in rational numbers.
Here is an example of a nonlinear mathematical program with rational data 
where the optimal solution is irrational:

minimize  x^4 +  x.



Calculus helps to solve this problem (and many other important problems) 
but we do not use it in this class.

In our class we use the following terms:
⁃ optimization (maximization or minimization)
⁃ feasible solution, feasible region
⁃ feasible value,
⁃ optimal (maximal or minimal) value, maximum or minimum
⁃ optimal solution (optimizer)
⁃ unbounded optimization  problem
⁃ infeasible  optimization  problem
⁃ mathematical program

⁃ linear form
⁃ affine function
⁃ linear equation
⁃ linear constraint
⁃ linear program

The definitions can  be found on the first page of  Linear Programming 
chapter  of Handbook of Linear algebra.

Note that   ∞, -∞ . and 1/0 are not numbers
and that
x> 0,  x ≠ 0  are  not linear constraints.

Linear function  means  linear form in some publications and affine 
function in others.

In a linear program, we want satisfy all given linear constrain.

Example.  x2 +  |y - 1| -> min.
It is a mathematical program with two unknowns, x and y.
The feasible region: all pairs (x, y) of numbers. It is given by finitely 
many linear constraints.



The objective function:    x2 +  |y - 1| . It is not an affine function 
(bonus homework).
The feasible values: nonnegative numbers.
The optimal value: min = 0.
The optimal solution: x = 0, y = 1.

Example. x -> min, x >0.
This mathematical program  is bounded and feasible but there are no 
optimal solutions.

Example. x -> max, x ≥ 0.
This linear program is unbounded.

Example  x -> min,  0 = 1.
This linear program is infeasible.

Historical issue. In the 1940s and 1950s, computers were humans and 
programming was not a computer science term.

———————————F-M————————————————

Little tricks. See  the  Linear Programming chapter  of Handbook of 
Linear algebra.

Trick 1. The constraint    f ≤ b  is equivalent to the constraint  -f ≥ -b.

Trick 2. The equation  f = b is equivalent to the system of two 
constraints:

f = b  ⇔ ( f ≤ b, f ≥ b)

 Trick 3.  The optimization problems



    f -> min    -f -> max
with the same feasible region
have the same optimal solutions.
Optimal values differ by sign:  min = -max.

Trick 4. The inequality  f ≤ b can be converted to equation   f 
+ x₀ = b by new non=negative unknown  x₀ = b - f ≥ 0.

Trick 5. Any unknown  x can be written as the difference of two non-
negative unknowns:

x = x' - x" with x', x" ≥ 0.

Graphical Method. Linear programs with 1 or 2 unknowns can be 
solved graphically.
There are many videos at web.

What it means to solve an optimization problem?  Usually, an optimal 
solution together with the optimal value is  a complete answer. But 
what if there are no optimal solutions?
Then the answer should say explicitly whether the problem is 
unbounded or infeasible. We will see later that for a  linear program 
we have exactly one of the following 3 outcomes: there is an optimal 
solution, the program is infeasible,
the program is unbounded.   

Exercises to §13.

Exercise 1.  Solve



2x+ 3y -> max,  |x| + |y| ≤ 5.

Exercise 2.  Solve

2x+ 3y -> max,  |x| + |y| ≤ 5.5, x and y integers.

Exercise 3.  Solve

2x + 3y -> min,  x + y = 1,  |x| ≤ 2,  |y| ≤ 3.

§14.  Standard tableaux.

We use  the standard tableaux of the Morris textbook. 
Here is  what a standard  m by n  row tableau  looks like:

x -
1

A b = -y
c d -> max

where
A b
c d

is an  m by n matrix of given numbers,  [c, d]  is  its last row,
b
d
is its  last column,
x is a row of n -1 unknowns,  y a column of m - 1 unknowns,  all 
names of unknowns in x, y are distinct.
Such a tableau means the following linear program:

AxT - b = -y, x ≥ 0,  y ≥ 0, cxT  -  d -> max.



Example 14.1. A 3 by 5  example is  the tableau (3.15) on p.78 of the 
Morris textbook.

Every linear program can be written in standard tableau using 5 little tricks 
given above.
Standard tableaux  in different books and input forms for  different 
linear programming software
can be reduced to each other by the same tricks.

Example 14.2. Write in a standard row tableau:

x1 + 2x2 - 3x3  ≥ 4,
-5x1 +6x2 -7x4 ≤ 1
x1 + 2x3 + x4 = 2
x1,x2,x3,x4 ≥ 0,
x2 - x3 + 2x4 -> max.

Solution. Using standard trick, we get the following answer:newer.
 x1  x2  x3  x4  -1
 -1  -2   3   0  -4   = -x5
 -5   6   0  -7   1   = -x6
    1      0      2      1      2        = -x7
   -1      0     -2     -1     -2        = -x8
    0      1     -1      2      0       -> max

14.3. Pivoting a standard tableau. Here is the pivot rule:

x
0

 

α
* β = -y0

γ δ



x
0

 

α
* β = -y0

γ δ

       ↓ pivot step
y
0

 

1
/
α

β
/
α

= -x0

-
γ
/
α

δ 
- 
β
γ 
/
α

where  α  (market by *) is a nonzero pivot entry,   
β  is  any entry in the pivot row but not the pivot entry,  
γ is any entry in the pivot column but not the pivot entry, 
and δ is any entry not in the pivot row or column;
γ and δ and  are in the same row;  β and δ and  are in the same 
column.

It is OK to use pivot steps to make a tableau standard, but if we want 
to keep our tableau standard, the pivot entry should not be in the last 
row or column.

 14.4. Here is  how a standard  m by n  column tableau  looks like:

u A b
-1 c d

= v ->min

where A, b, c, d are as above,



u is a column of m-1 unknowns, 
v  is a row of n -1 unknowns,  all names of unknowns in u, v are 
distinct.
Such a tableau means the following linear program:
uTA - c = v,  uTb - d -> min, u ≥ 0, v ≥ 0.

Actually, we can write two linear programs sharing the same matrix:

x -1
u A b = - y
-1 c d ->max

=v ->min

They are called dual to each other.

Here is our pivot step  for both:

x0  
u0 α* β =-y0

γ δ
=v0

       ↓ pivot step

y0  
v0 1/α β/α =-x0

-γ/α δ - βγ /α
=u0

Simplex method works with standard tableaux. We start with initial 
tableau and reach a terminal tableau in finitely many pivot steps.
A terminal tableau gives an answer to our linear program.



Here is  how to switch the row and column problems:

x -1
u A b = - y
-1 c d =f->max

=v =g->min

       ↓  ↑  transpose

uT -1

xT -AT -cT = - vT

-1 -bT -d =—g->max

=yT =-f>min

Examples.
 Solve the linear programs given by standard tableaux.

Example 17.6.

x1  x2  -1
1   2    3   = -x3
0  -1    2   = -x4
0   1   -2   = -x5
-1  0   -2  -> max

The third row (x5-row) reads  x2 +2 = -x5.  Since all x's are ≥ 0   (the 
tableau is standard)  this constraint is infeasible.

Answer: The linear program is infeasible.



More generally, we call a row in a standard tableau  bad if it has the form

⊕        -1
—————
⊕       -  |   =     ⊖

here   ⊕   stands for non-negative numbers,  - stands for a negative number, and  ⊖ 
stands for a nonpositive variables (but not for the objective variable which is not restricted 
in sign).

A bad row in any standard tableau makes the row problem infeasible .

Example 17.7.

x1  x2  -1
1   2    3   = -x3
0  -1    2   = -x4
0   1    2   = -x5
-1  0   -2  -> max

The object if function is  f = -x1 + 2 ≤ 2. 
We can make  f = 2 by setting x1 = x2 = 0,  
hence x3 = 3, x4 = 2, x5 = 2.
Answer: max = 2 at  x1 = x2 = 0,  x3 = 3, 
x4 = 2, x5 = 2.

More generally, we call a standard tableau

x -1
u A b = - y
-1 c d ->max

=v ->min



optimal, if  b ≥ 0 and c ≤ 0. In other words, the matrix 
A b
c d

of given numbers has the following signs:

       ⊕
⊖  

For any optimal tableau
max = -d at  x = 0, y = b (the basic solution for the row program is 
optimal)
and min = -d at u = 0, v =  -c   (the basic solution for the column 
program is optimal)
Note that the optimal values for the dual problems are the same.
The transpose of an optimal tableau is optimal.

Example 17.8. Solve the system   2x + 3y = 
7, 3x+4y = 10
by 2 pivot steps.
Solution. We write the linear system in 2 
by 2 column tableau

x  2   3
y  3   4
  =7  =10

We choose 2 as the first pivot entry and pivot:

x  2*   3              7    1/2   3/2
y  3    4     —>       y   -3/2  -1/2



  =7   =10                  =x    =10

where   4   ⤅ 4 - 9/2 = -1/2. Now we chose -1/2 as the pivot entry and 
pivot:

7    1/2   3/2                7   -4   3
y   -3/2  -1/2*   —>         10    3  -2
     =x    =10                    =x  =y

where   -/2   ⤅  1/2  - (-9/4)//(-1.2) = 1/2 -  9/2 = -4.    So  x = -28 + 30 
= 2  and y =  21 - 20 = 1.
Answer: x = 2, y = 1.

Note that we inverted the coefficient matrix 
2  3
3  4
(its inverse is the matrix
-4 3
3 -2
of the last tableau) and that we can replace  7, 10 by any numbers  a, 
b in the problem and the last tableau.

Also, like in ancient Chinese texts, all data and the final answer are in 
natural numbers but negative numbers and fractions appear between.

Exercises to §14.

 Solve the linear programs given by standard tableaux.



Exercise 1. 

x1  x2  -1
1   2    3   = -x3
0  -1    2   = -x4
-1  0   -2  -> max

Exercise 2. 

x1  1  2    3    
x2  0 -1    2    
—1  -1 0   -2   
      =x3   =x4      ->min

Exercise 3. 

x1  x2  -1
1  2    3   = -x3
0 -1   -2   = -x4
-1 0   -2  -> max

§15.  From matrix game to standard tableau.

Given a matrix game with  players He and She and  an  m by n payoff 
matrix  M,
we consider his mixed strategies  as columns   p = [p1,…, pm]T and 
her mixed strategies as rows [q1,…, qn].
His optimization problem is



min( pTM) -> max subject to p ≥  0, p1+…+ pm = 1
We convert it to a lineup program by introducing a new variable u:

u -> max,  pT M)   ≥ uJn,  p ≥  0, p1+…+ pm = 1

where  Jn  is the row of  n  ones.

Her linear program is

v -> min , MqT  ≤  J'mv,   q ≥ 0, q1 + … _ qn = 1

where  J'm   is the column of  m ones.

Using the little tricks  given above, we can write both problems in a 
standard tableau of size  N + 3 by  n + 3

     q    v'   v" -1   
 p   M   -J'm J'm  0   = -*

 u"  Jn   0    0   1   = -*

 u' -Jn   0    0  -1   = -*

-1   0   -1    1   0   = — v -> max
     =*  =*   =*   =-u->min

 or
      pT   u"   u'  -1   

 qT  -MT  -J'n  J'n  0   = -*

 v'  Jm    0    0    1   = -*

 v" -Jm   0     0   -1   = -*



-1   0   -1     1    0   = u -> max
     =*  =*    =*   =v->min

Now we see that his problem and her problem are 
dual to each other.
It is easy to see that both problems are feasible and 
bounded. So by the duality theorem (see the next 
chapter), they have the same optimal value hence 
we obtain the minimax theorem.

There is a trick to save two rows and two columns, 
see the Morris textbook.
It involves making the value v of game positive by 
adding a number to all entries of the payoff matrix 
(which do not change the optimal strategies) and 
then putting p/v and q/v into a standard tableau 
instead of p and q.
This makes sense if you have no computer (or a 
smart phone) around .

Exercises to §15.

Exercise 1.  Write a standard tableau for Heads&Tails game.



Exercise 2.  Write a standard tableau for the matrix game in  Exercise 1  of  
§12.

Ch6.  Simplex method
Scheme of simplex method. All tableaux in simplex 
method are standard row tableaux.

                                 a tableau with a bad row
initial      Phase 1      ↗    terminal (the row program is 
infeasible)
              ——————>                                                           
the basic solution is optimal, cf., Example 2 in §14.
 tableau     pivot steps   ↘︎   a row feasible tableau     Phase 2                
optimal tableau terminal
                                terminal for Phase 1     —————————-—>      
↗
                                initial for Phase 2      pivot steps       
↘︎    feasible with a bad column  
                                                                                
terminal, program is inbounded                        

16. Phase 2.

Given a standard tableau



x -1
u A b = - y
-1 c d =f->max

=v =g->min

the basic solution for the row program is  x = 0, y = b
and the basic solution for the column program is  u = 0, v = -c.

The tableau is called row feasible if b ≥ 0, i.e., the basic solution for 
the row program is feasible.
In this case, the current value -d for f is feasible.
The tableau is called column feasible if  c ≤ 0, i.e., the basic solution 
for the column program is feasible.

So the tableau is optimal if and only if it is both row and column 
feasible.
In this case, the basic solutions are optimal and -d is the optimal value 
for both.

All tableaux in Phase 2 of simplex method are row feasible. 
The strategy is to keep the tableau feasible and improve the current 
feasible  value.
To keep the last entry in the pivot row positive, we want the pivot entry 
to be positive. To 
improve the current feasible value, we want the last entry in the pivot 
column to be positive.
We also have to check whether our tableau is terminal.

1. Is the tableau optimal, i.e., is c ≤ 0?
If yes,  we write the  answer for the row program:  max = -d at x = 0, y 
= b..



2. Is there a bad column?
If yes, the row program is unbounded.

3. (choosing a pivot entry) We pick a positive entry  cj in the last row, 
but not the last entry. 
(Such an entry exists. Otherwise the tableau is optimal and we 
terminated in 1.) 
This entry is going to be the last entry in the pivot column.
We look for positive entries  ai above as potential pivot entries. 
(At least one exists. Otherwise we have a bad column and we 
terminated in 2.)
Now we compute    bi/ai  for  those  ai  where  bi  is the last entry in 
the pivot row. 
We chose the minimal (closest to 0) ratio. This is our pivot entry  ai

4. Pivot and go to 1.

Note that   bi ≥ 0  in the pivot row goes to  bi/ai ≥ 0 .
Every other  entry bj   in the last column (but not the last entry 
-d) goes  to  bj   -  ajbi/ai .
If aj  ≥ 0,   then  bj/aj -   bi/ai   ≥ 0 hence     bj  - ajbi/ai    ≥ 0.
If aj  ≤ 0,   then      bj  - ajbi/ai    ≥ bj  ≥ 0.
So the tableau stays row feasible.

The last entry d  goes to   d - ci bi/ai    ≤  d so the current feasible 
value  -d either goes up (when   bi ≠ 0) or stays the same (when bi = 
0).
In the second, when the last entry in the pivot row is 0,  case not only 
the current feasible value stays  the same, but the whole feasible 



solution stays the same, Such a pivot step is called degenerate.
However we switch a variable on top with a variable at right margin.

For a tableau of size m+1  by n +1, there are  (m+n)! ways to place 
our  m + n variables at the top  and right margins. Not all of them can 
be always obtained from the initial tableau in Phase 2. 
Once the positions for variables are fixed, the   tableau is unique.
This is because all tableaux describe the same solutions for a system 
of linear equations.
So we cannot return to a table we had before unless all steps are 
degenerate.

So we terminate in finitely many steps (< (m+n)! steps) unless we 
have a cycle of degenerate pivot steps.
Bland gave a simple rule to prevent cycling.

Make a list of variables, i.e., sort them. Then whenever we have a 
choice, prefer the variable which happens first on the list.
The fact the rule works can be found in several textbooks on linear 
programming including my textbook.

This rule is rarely used in software implementations because cycling 
happens rarely. Also examples were constructed when this rule result 
in a very large number of pivot steps.
It is an open problem whether there is a modification of simplex 
method with the number of pivot steps bounded by a polynomial in m
+n.

There are publications where an average number of pivot steps is 
bounded by an affine function of m + n. This number  should be 
expected for real life linear programs.
In real life, linear programs as well as systems of linear equations) are 
solved approximately.
The most serious  problem for simplex method is not cycling. It is error 
accumulation. Usual methods should be used to resolve this problem.



Example 16.1. Solve the linear program given by the  standard  row 
tableau
x1 x2 x3 x4 x5 -1
 0  1 -2  3  4  1 =-x6
 1  1 2  -3  4  0 =-x7
-3  1 0   3 -4  2 =-x8
 0 -1 -2  0 -1 -1 ->max
  
Solution. The tableau is optimal, so
max = 1 at x1=x2=x3=x4=x5 = 0,  x6 = 1, x7 = 0, x8 = 2.
There are other optimal solutions.
An optimal solution for the dual problem is
y6 = y7 = y8 = 0, y1 = 0, y2 = 1, y3 = 2, y4 = 0, y5 = 1
where  yi is dual to xi for i = 1,…,8. 
The optimal value is the same.

Example 16.2. Solve the linear program given by the  standard  row 
tableau
x1 x2 x3 x4 x5 -1
 0  1 -2  3  4  1 =-x6
 1  1 2   3  4 -1 =-x7
-3  1 0   3 -4  2 =-x8
 0 -1 -2  0 -1 -1 ->max

Solution. The tableau is not row feasible so we cannot go to Phase 2.
The x7-row is bad so the row program is infeasible.

Example 16.3. Solve the linear program given by the  standard  row 
tableau
x1 x2 x3 x4 x5 -1



 0  1  2  3  4  1 =-x6
 1  1 —2  3  4  1 =-x7
-3  1  0  3 -4  0 =-x8
 0  1  2  0 -1 -1 ->max

Solution. The tableau is row feasible.
It is not optimal and there are no bad columns so the tableau is not 
terminal for Phase 2.
There are two choices for the pivot column, namely, x2-column and 
x3-column.
There are two choices for the pivot entry marked by *:

x1 x2 x3 x4 x5 -1
 0  1  2* 3  4  1 =-x6
 1  1 —2  3  4  1 =-x7
-3 1*  0  3 -4  0 =-x8
 0  1  2  0 -1 -1 ->max

The choice in x8-row is degenerate. We pivot on 2  in x6-row:
x1 x2 x3 x4 x5 -1
 0  1  2* 3  4  1 =-x6
 1  1 —2  3  4  1 =-x7
-3  1  0  3 -4  0 =-x8
 0  1  2  0 -1 -1 ->max

↓ pivot step

x1 x2 x6  x4 x5  -1
 01/2 1/2 3/2 2 1/2 =-x3
 1    —2          2 =-x7
-3  1  0   3 -4   0 =-x8
 0  0 -1  -3 -5  -2 ->max



We left 3 entries uncomputed.
Now the tableau is optimal.
Answer: max = 2 at  x1= x2= x6 = x4 = x5 = 0, x3 = 
1/2, x7 = 2, x8 = 0.

Example 16.4. Solve the linear program given by the  standard  row 
tableau
x1 x2 x3 x4 x5 -1
 0  1 -2  3  4  1 =-x6
 1  1 -2  3  4  1 =-x7
-3  1  0  3 -4  2 =-x8
 0  1  2  0 -1 -1 ->max

Solution.  The tableau is row feasible, so we proceed with Phase 2.
The  x3-column is bad so the row problem is unbounded and the 
column problem is infeasible.
To  see that  the row problem is  unbounded,  set x1 = x2 = x4 = x5 = 
0. Then
x6 = 1 + 2x3 ≥ 0, x7 = 1 + 2x3 ≥ 0, and x8 = 2  ≥ 0 when x3 ≥ 0.
We increase  x3 to see that the objective function 1 + 2x3 takes 
arbitrary large feasible values/
Answer. The program is unbounded.

 
Example 16.5.  In the following standard tableau, mark by * the 
choices for the pivot entry consistent with Phase 2:

x1 x2 x3  x4  x5 -1
 0  2* -2  3  4   2 =-x6
 1* 1* -2  3* 4*  1 =-x7
-3 -1   0  3 -4   2 =-x8
 1  1  -2  1  1  -1 ->max



Solution.
x1 x2 x3  x4  x5 -1
 0  2* -2  3  4   2 =-x6
 1* 1* -2  3* 4*  1 =-x7
-3 -1   0  3 -4   2 =-x8
 1  1  -2  1  1  -1 ->max

There are  5 choices.

Example 16.6. Solve the linear program given by the  standard  row 
tableau

-1
 2   = -x1
 3   = -x2
-1   = -x3
      -> max

Solution. It is a 3 by 1 standard tableau. The last entry in the matrix is 
absent, but it does not matter in this example.
The x3-row is bad, so the row program is infeasible. 
The column program is unbounded.
The tableau is not row feasible, so we cannot go to Phase 2.
It is column feasible. The transposed tableau is row feasible with a 
bad column.

In general, the simplex merged applied to the transposed tableau is 
known as the dual simplex method.

Example 16.7. Solve the linear program given by the  standard  row 
tableau



x1   x2   x3   -1
1     2   -1    1 = -  x4
1     2   -2    3  -> max

 
Solution. The tableau is feasible but not terminal. There are two 
choices for a pivot column and two choices for a pivot entry.
We pick  the x1-column.

x1  x2   x3  -1
1*   2   -1   1 =- x4
1    2   -2   3  -> max

↓ pivot step

x4  x2   x3   -1
 1   2   -1    1  =- x1
-1   0   -1    2  -> max

The current feasible value improved from -3 to -2.
Now the tableau is optimal.
max = -2 at  x4 = x2 = x3 = 0, x1 = 1.

Example 16.8. Solve the linear program given by the  standard  row 
tableau

x1  x2   x3  -1
1     2   -1   0 =- x4
1    2   -2    3  -> max
 
Solution. The tableau is not terminal. There are two choices for a pivot 
column and two choices for a pivot entry.
We pivot on one of them:

x1  x2   x3  -1
1*    2   -1   0 = -x4
1    2   -2    3  -> max



↓ pivot step

x4  x2   x3  -1
 1    2   -1   0 = -x1
-1   0   -1    3  -> max

It was a degenerate pivot step. The last column of the matrix did not 
change.
Now the tableau is optimal.
max = -3 at  x4 = x2 = x3 = 0, x1 = 0.

Exercises to §16.

Exercise 1.  Solve the linear program given by the  standard  row 
tableau

x1 x2 x3 x4 x5 -1
 0  1 -2  3  4  1 =-x6
 1  1 -2 -3  4  0 =-x7
-3  1  0  3 -4  2 =-x8
 0 -1  2  0 -1 -1 ->max

Exercise 2.  Solve the linear program given by the  standard  row 
tableau

x1 x2 x3 x4 x5 -1
 0  1 -2  3  4  1 =-x6
 1  1  2  3  4  1 =-x7
-3  1  0  3 -4  2 =-x8
 0 -1 -2  0 -1 -1 ->max



Exercise 3.  In the following standard tableau, mark by * the choices for 
the pivot entry consistent with Phase 2:

x1 x2 x3 x4 x5 -1
 0  1  4  3  4  2 =-x6
 1  1  2  3  0  1 =-x7
-3  1  0  3 -4  2 =-x8
 1  1  2  1  1  1 ->max

How many choices are there?

§17. Phase 1.

We start with a standard tableau with the matrix

A b
c d
 of size  m + 1 by n + 1.
The strategy is to increase the first negative entry in the last column  b while keeping 
the entries above non-negative.
Also we check whether the tableau is terminal before pivoting.

1. Is the tableau row feasible, i.e.,  b ≥ 0?
If yes, we go to Phase 2.

2. Is there a bad row?

⊕ -1
⊕ - =  ⊖     or  + =  ⊖

If yes, the row program is infeasible.



3  (choosing a pivot entry). We find the first  ai   <  0   
in     the last column 
any  ai      <    0  in this row.

          -1
           ⊕ |
     ai   bi |=  ⊖

This ai   is going to be the pivot column. The pivot  entry is going to be 

ai     <    0    or  some entry  aj > 0 above.

It may happen that  there is nothing above  ai   (i.e.,   ai   and  bi  
are in the first row) or all entries above   ai     are 

 ≤  0 in which case  ai   is the pivot entry. 
We compare   bi /ai    and all   bj/aj     with      aj > 0   above ai  
and choose a minimal (closest to 0) ratio.

4. Pivot and go to 1.

Cycling  is possible. but unlikely.
Every pivot step in a cycle is degenerate.
Bland's rule prevents cycling.
Moreover under the rule, in Phase 1 or 2, we cannot return to a 
tableau  with the same set of variables on top.
Therefore the total number of pivot steps in both phases is less  
than   (n+m)!/(m!n!) which is an upper bound for the number of all  
basic solutions.
This bound can be improved but no polynomial in  m+n bound is 



known. For a fixed  m or n, the bound  (n+m)!/(m!n!) w is 
polynomial.
If we know which  n  variables are on the top in a terminal tableau, 
we can reach a terminal tableau from any initial tableau in at most 
min(m,n)  ≤ m + n
pivot steps (with all tableaux standard but with pivot entry choices 
not necessary consistent with simplex method).
If we are in Phase 2, it is unknown whether we can bound  the 
number of pivot steps needed to reach a terminal tableau  with 
feasible tableaux on the way
by a polynomial in  m + n.

Note that we do not check for bad columns in Phase 1, because 
our primary program is the row program and presence of a bad 
column leave open the question whether the row 
problem is unbounded or infeasible..
However if we reach a row feasible tableau, the question is 
resolved (the row problem is unbounded) so we do not need to 
follow with Phase 2.

Example 17.1.   Solve the linear program given by the  standard  row tableau

x1  x2   x3  -1
1     0    1   -1 = -x4
1    2   -2    3  -> max
 
Solution. The x4-row is bad, so the row problem is infeasible.
The x2-column is bad, so the column problem is infeasible.

Example 17.2.   Solve the linear program given by the  standard  row tableau

x1  x2    x3  -1
1     0    -1   -1 = -x4
1     2    -2    3  -> max
 
Solution. The  tableau is not feasible and has no bad rows. 
There is only one choice for a pivot entry consistent with Phase 1.

x1  x2    x3    -1



1    0    -1*   -1 = -x4
1    2    -2     3  -> max

↓ pivot step

x1   x2    x4  -1
-1    0    -1   1 = -x3
-1    2    -2   5  -> max

The tableau is  row feasible so we go to Phase 2. 
The   x2-column is bad, so the row problem is unbounded.

The x2-column is bad in both tableaux. So the column program  is 
infeasible.

Example 17.3.   Solve the linear program given by the  standard  row tableau

x1  x2   x3  -1
1      2    -1   0 = -x4
1     -2    -1   -1 = -x5
-1    -2    -1   -1   -> max
 
Solution. The  tableau is not feasible and has no bad rows. 
There are  2 choices for a pivot entry consistent with Phase 1.

x1  x2     x3    -1
1      2*    -1    0 = -x4
1     -2     -1*   -1 = -x5
-1    -2     -1   -1   -> max

Pivoting on 2 (degenerate pivot step) would give an infeasible tableau with no bad rows.
Let us pivot on   -1:

x1   x2     x3    -1
1      2     -1      0 = -x4
1     -2     -1*   -1 = -x5
-1    -2     -1   -1   -> max

↓ pivot step

x1  x2     x5    -1
 0     4     -1    1 = -x4
-1     2     -1    1 = -x3



-2    0     -1     0   -> max

The tableau is row feasible, so we go to Phase 2.
The tableau is optimal, so
max = 0 at  x1 = x2 = x5 = 0, x3=x4 = 1.

The original  tableau is column feasible so the dual simplex method looks attractive. Transposing the 
tableaus allows us to bypass Phase 1.
However the transposed tableau is not optimal so we have to pivot at least once.
Actually we would have only one choice for a pivot entry in the transposed tableau consistent with Phase 
2. It would be to switch  x3 and x5 like we did above.

Example 17.4.   In the following standard tableau, mark by * the choices for the pivot entry consistent with 
the simplex method:

x1 x2 x3  x4 x5 -1
 0  1 -2  3   4  2 =-x6
 1  1 -2 -3   4  0 =-x7
-3 -1  0 -3  -4 -2 =-x8
 1 -1 -2  1   1 -1 -> max

Solution.
x1 x2 x3  x4 x5 -1
 0  1 -2  3*  4  2 =-x6
 1* 1*-2 -3   4* 0 =-x7
-3 -1  0 -3* -4 -2 =-x8
 1 -1 -2  1   1 -1 ->max

There are  5 choices.

Example 17.5.  Solve the linear program given by the  standard  row tableau

 0  6  5   
-3 -3 -2   
 1  2  0  

Solution. There are two choices compatible with simplex method:

 0  6  5   
-3*-3*-2   
 1  2  0  

If the first column is the pivot column, the pivot step gives a feasible tableau with a bad column, so the 
row problem id unbounded.
Actually, the first column was bad in the initial tableau.



If we pivot on -3 in the second column, we obtain a feasible tableau without bad columns or rows. So we 
have to pivot more (unless we noticed that 
 the first column was bad in the initial tableau.)

By the way,  choosing  6 as the pivot entry in the initial tableau is not consistent with Phase 1 because 2/3 
< 5/6.
This choice would not produce a feasible tableau although it would keep the first entry in the last column 
positive and increase  the second entry,

Example 17.6.  Solve the linear program given by the  standard  row 
tableau
x1 x2 x3 -1
-3  6  5 -4  = -x4
 3 -3 -2  3  = -x5
-3  4  2 -3  = -x6 
 1  2  0  1  ->max

Solution. Instead of simplex method, we use a trick.
We add the first two rows and obtain a bad row:

x1 x2 x3 -1
0   3  3 -1 = -x4 - x5.

So the row problem is infeasible.

In general, if the row  m+1  by n + 1  problem is 
infeasible, there is a mixture of 
the first  m rows which is a bad row. 
However finding such a mixture could be difficult and the 
simplex method is the most common way to do this.

Example 17.7.  Solve the linear program given by the  standard  row tableau

x1 x2 x3 -1
 3 -6  5 -2  = -x4
-3  3 -2  3  = -x5
-3 -1  2 -3  = -x6 



-1  2  0  1  ->max

Solution. Instead of simplex method, we use a trick. 
We set x1 = x2 and x3 = 0. The we have the standard tableau

x1   -1
-3   -2  = -x4
 0    3  = -x5
-4   -3  = -x6 
 1    1  ->max

The x1-column is bad but the tableau is not row feasible.
Now we give  x1 bigger and bigger values. Then
x4 = 3x1 - 2 ≥ 0 when x1 > 1,
x5 = 3 ≥ 0,
x6  = 4x1 - 3 ≥ 0 when x1 > 1,
and the objective function  x1 - 1 takes arbitrary large feasible values. So the row program is unbounded.
Therefore the original row program is unbounded. 

Exercises to §17.

Exercise 1.  In the following standard tableau, mark by * the choices for the pivot entry consistent 
with the simplex method:

x1 x2 x3  x4 x5 -1
 0  1 -2  3   4  0 =-x6
 1  1 -2 -3   1  1 =-x7
 1  1 -2 -3   4  1 =-x8
-3 -1 -1 -3  -1 -1 =-x9
 1  1  2  1   1 -1 -> max

Exercise 2.  Solve the linear program given by the  standard  row tableau

x1 x2 x3 x4  x5 -1
 0  1 -2  3   4  0 =-x6
 1  1 -2 -3   1  1 =-x7
 1  1  2  0   4  1 =-x8
-3 -4 -9 -3  -3 -4 =-x9
 1  1  2  1   1 -1 -> max



Exercise 3.  Solve the linear program given by the  standard  row tableau

x1 x2 x3 x4  x5 -1
 0  1 -2  3   4  0 =-x6
 1  1 -2 -3   1  1 =-x7
 1  1  2  0   4 -1 =-x8
-3 -4 -9 -3  -3 -1 =-x9
 1  1  2  1   1 -1 -> max

§18. Duality.  Theorem on 4 alternative

There are many connections between linear programs dual to each 
other.

18.1. Given a standard tableau

x -1
u A b = - y
-1 c d =f->max

=v =g->min

every feasible value of the row program  is ≤ every feasible value of 
the column program.
Moreover, for the difference of the feasible values      uTb - d  and   
cxT - d , we have
 (uTb - d) - (cxT - d ) = uT y +  v xT ≥ 0.

Indeed, let  (x, y) be a feasible solution for the row program and
(u, v)  be a  be a feasible solution for the column program .
We want to show that
 uTb -  cxT   = uT y +  v xT.



We have  
AxT - b = - y ≤ 0, x ≥ 0
and
uTA - c = v  ≥ 0, u ≥ 0, 
hence
uTAxT -uT b  = - uT y 
and 
uTAxT - cxT  = v xT  .
So uTb -  cxT   = uT y +  v xT.

Definition   18.2.  The feasible solutions    (x, y)  and   (u, v) are 
complementary  if     uT y +  v xT = 0, i.e.,

  (the value of every variable) *  (the 
value of the dual variable) = 0.

It follows from 17.1 that complementary feasible solutions are optimal.
The converse is also true.  It is a part of the duality theorem which is a 
part of the following result.

18.3. Theorem on 4 alternatives.
For a linear program, there are 3 alternatives:
the program has an optimal solution.
the program is infeasible,
the program is unbounded,
Now we consider possible outcomes for the pair of linear programs 
dual to each other.
We write the programs in a standard tableau and apply the simplex 
method. 
If  the row program has an optimal solution, we terminate at an optimal  
tableau which also gives an optimal solution for the column program 



with the same optimal value. 
This explains the first row   
√ max=min     ー    ー
  of the table

row  \   column optimal infeasible unbounded
optimal √ max=min ー ー
infeasible ー √ √ 
unbounded ー √ ー

√  possible
ー impossible

The first column  follows by transposing the tableau.
In particular we obtain the duality theorem: if a linear maximization 
problem has an optimal solution then the dual minimization problem 
has an optimal solution with the same optimal value.

If  the row problem is unbounded, we terminate with a row feasible 
tableau with a bad column. The bad column shows that the column 
program is infeasible.
This explains the last row and hence the last column.

Finally, the following 2 by 2 standard tableau

0 -1
1  0

has both bad row and bad column so it may happen that both a linear 
program and its dual are infeasible.

Thus, of 9 potential outcomes, 4 are possible and 5 are not, hence the 
name "theorem on 4 alternatives.
It is also known as the theorem on 3 alternatives because 4 outcomes 
can be covered by 3 sentences. 



E.g.,  given a pair of linear programs, one of following outcomes 
happens:
both programs have optimal solutions,
one is unbounded and the other is infeasible,
both are infeasible.

There are several ways to state the duality theorem. E.g., 
if both a linear program and its dual are feasible, then both have 
optimal solutions and max = min.
The duality theorem implies the minimax theorem for matrix games.
It also implies the complementary slackness theorem mentioned above:
feasible solutions for the row and column programs are optimal if and only 
if they are complementary.
This give a practical way to double-check optimality.

Here is another criterion for optimality:
feasible solutions for the row and column programs are optimal if and only 
if they  have the same values for the objective functions. 
However this criterion is not as useful for  checking optimality when only 
one feasible solution is given.

We obtain the theorem on 4 alternatives from the fact that it is possible to 
avoid cycling in simple method (by perturbation or Bland's rule).

Example 18.4.  Consider the row program given the standard tableau

x1 x2 x3  x4 x5 -1
 0  1 -2  3  -1  2 =-x6
 1  1 -2 -3  -1  0 =-x7
-3 -1  0 -3   0 -2 =-x8
 0  0  0  0   0 -1 -> max

Is   there an optimal solution with x1 = 1, x2 = 2, x3 = 3,  x4 = 4, x6 = 6?

Solution. For such a solution, the first row reads
2 - 6 + 12 - x5 - 2  = -6 hence  x5 = 12.
The second row reads
1 + 2 - 6 -12 - 12 = -x7 hence  x7 = 27.
The third row reads
-3 - 2 -12 + 2 = -x8  hence x8 = 15.
So we have a feasible solution.
Since the objective function is constant, every feasible solution  is optimal
Any optimal solution for the column program is complementary so all dual variables take value 0.



Example 18.5.  Consider the row program given the standard tableau

x1 x2 x3  x4 x5 -1
 0 -1 -2  3  -1  2 =-x6
 1  1 -2 -3  -1  1 =-x7
-3 -1  0 -3   0 -2 =-x8
 1  1 -2 -4  -1 -1 -> max

Is  there an optimal solution with x1 = 1, x2 = 2, x3 = 0,  x4 = 0, x6 = 6?

Solution. The first row reads  -2 -x5 -2 = -6  hence x5 = 2.
The second row reads 1 + 2 -2 - 1 =  -x7  hence  x7 =  0.
The third row reads -3 - 2 +2 = - x8 hence x8 = 3.
So we have a feasible solution for the row program.
If it is optimal, the column program has an optimal solution.
Let yi be dual to xi.  For optimal (yi) we have y1 =  y2 = y5 = y6 =  
y8 = 0 by complementary slackness

    1    2  0   0   2 -1
 0  0   -1 -2   3  -1  2 =-2
y7  1    1 -2  -3  -1  1 = 0
 0 -3   -1  0  -3   0 -2 =-3
-1  1    1 -2  -4  -1 -1 -> max
   =0   =0 =y3 =y4 =0  -> min

The first column gives y7 = 1. The second column reads the 
same.
The third column gives y3 = 0. The y4-column gives y4 = 1.
The  y5-column reads 0 = 0.
So we got a complementary feasible solution for the column 
program.
Therefore both feasible solutions are optimal.

Exercises to §18.



Exercise 1. In the standard tableau

x1 x2 x3  x4 x5 -1
 0 -1 -2  3  -1 -2 =-x6
 1  1 -2 -3  -1  3 =-x7
-3 -1  0 -3   0 -2 =-x8
 1  1 -2 -4  -1 -1 -> max

Is   there an optimal solution with x1 = 1, x2 = 2, x3 = 0,  x4 = 0, x5 = 0?

Exercise 2. In the standard tableau

x1 x2 x3  x4 x5 -1
 0 -1 -2  3  -1 -3 =-x6
 1  1 -2 -3  -1  3 =-x7
-3 -1  0 -3   0 -5 =-x8
 1  1 -2 -4  -1 -1 -> max

Is   there an optimal solution with x1 = 1, x2 = 2, x3 = 0,  x4 = 0, x5 = 0?

Ch7. Cooperation

§19. Nash bargaining.

This  is a cooperative  approach to solving games (with finite normal forms). without 
side payments.
For every  finite normal form , it gives a mixed  joint   strategy. The corresponding joint 
payoff is unique.

Nash suggested this approach in his Ph.D. for two players, {i.e.,  for bimatrix games.)  
But it can be generalized to any number of players.
Here we restrict ourselves to bimatrix games.
The Nash solution (the joint payoff) is called arbitration pair in the Morris textbook.
This is because sometimes bargaining involves an authority figure  (Arbiter, Justice of the 
peace, etc)
 who helps to reach  an agreement  (resolve a dispute) and enforce it.
In the case of any matrix game, the pair is (v, -v)  where  v  is the value of game. 

https://en.wikipedia.org/wiki/Arbiter
https://en.wikipedia.org/wiki/Justice_of_the_peace
https://en.wikipedia.org/wiki/Justice_of_the_peace
https://en.wikipedia.org/wiki/Justice_of_the_peace


About "without side payments." sometimes side payments are called bribes or 
corruption and are illegal.
Sometimes it is difficult to transfer payoff from one player to another because   payoff  
measures something like happiness or satisfaction.
One mysterious way to do this is known as love.
The next section consider the games with side payments.

By a mixed joint strategy we mean a mixture of strategy profiles (pure joint strategies). 
The corresponding joint payoff is the mixture of payoffs corresponding to the strategy 
profiles.

Example 19.1. Battle of Sexes

He & She Ballet Football
Ballet 1, 5 0, 0
Football 0,0 5, 1

We have 2 equilibria in pure strategies:(Ballet, Ballet) and  (Football, Football).
There is another equilibrium in mixed strategies, ((Ballet+5Football)/6,  (5Ballet + 
Football)/6):

He & She Ballet Football (5Ballet + Football)/6
Ballet 1*, 5* 0, 0 5/6*, 25/6
Football 0,0 5*, 1* 5/6,* 1/6
(Ballet+5Football)/6 1/6, 5/6* 25/6,5/6* 5/6,* 5/6*

Can we call any of 3 a solution for the game? Obviously, none.

On the other hand,  a mixed joint strategy  ((Ballet, Ballet)+ (Football, Football))/2  with 
the payoff (3,3) is the Nash bargaining solution.
An interpretation of this solution is that they decide what to watch by tossing a fair coin 
each time.
So half of time  he has his way, and half of time she has her way.

The Nash bargaining for any bimatrix game starts with computing 
an initial point (x0, y0) for bargaining, aka the disagreement point.
He computes  x0 = v(He) as the maximal payoff he gets in spite of 
her. In other words, he maximizes his worst-case payoff  .
In  other words,  x0   is the value of the matrix game where her 



payoff is replaced by the negative of his payoff.
Similarly,  y0 = v(She)   is what she gets in spite of him.

In Example 19.1,  x0 is the value of the matrix game
1  0
0  5

so  x0 =  5/6. Similarly,  y0 =  5/6 , because the game is symmetric.

In general, he wants  to get at least  x0  and she wants to get at least  y0 .
They plot all joint payoffs (x,y) in plane.  For m by n bimatrix game, they get  a set P of ≤ 
mn points in plane 
(some of them can coincide, e.g., for Battle of Sexes they have  3 points, (5, 1), (0,0), 
and (1,5).
Using mixed joint strategies, they get all mixtures of these points, which is called there 
convex hull of  P.
The hull is a convex polygon whose corners are the points  in P which are not mixtures 
of other points.
In the degenerate case, the hull could be an interval or even a point.

They consider the part  H  of the convex hull  imposing the conditions  x ≥ x0   and  y ≥ 
y0  .
This H  is also a convex polygon.

A point  (x,y) in H is called Pareto optimal if there is no other point  (x', y') in H with  (x,y) 
≤ (x', y'). 

Since they cooperate, they want their joint payoff to be Pareto optimal. 
Every Pareto optimal point is uniquely mixture of two points in P. 
So once they found the joint payoff, (x*, y*) they want,  they have a mixed joint strategy 
to achieve it.

It may happen that x = x0 on H. In this case x* = x0  and  y*  is the maximal value of y 
on H 
It may happen that y = y0 on H. In this case y* = y0  and  x*  is the maximal value of  x  
on H   
In both cases (x*, y*) is the only Pareto optimal point on H.

More generally, when there is only one Pareto optimal solution it is the Nash solution.

Assume now that there is more  than one Pareto optimal solution. 
Then  the Nash  solution for the joint payoff (the arbitration pair in the textbook) is the 
optimal solution f(x*,y*)  for



(x - x0 )(y - y0 ) -> max on the feasible set H.

The Nash solution (arbitration pair) always exists and is unique. It is 
always Pareto optimal.
InIn  the textbook, it is defined by axioms.

For any matrix game,  H consists of the single point  (v(He), v(She))    so  the Nash 
solution for joint payoff is 
(v(He), v(She)) where  v(he) = -v(She) is the value of game.

For Example 19.1 we have 3 joint payoffs: (0, 0),  (1, 5), and (5, 1). The 
mixtures form a triangle. A 
The Pareto optimal solutions are the mixtures of  (5,1) and (1,5).
A picture of triangle with ignition point (3/5, 3/5) and the Nash bargaining 
solution (3, 3) can be found on p.133 of the textbook,
The Nash solution for the mixed joint strategy is
 ((Ballet, Ballet)+ (Football, Football)/2.
An implementation   of this solution is that they toss a fair coin to decide 
whether he  has his way or she does.

For the Prisoner's Dilemma, for usual choices of payoffs,   the Nash bargaining  solution 
for mixed joint strategy is the code of silence (the pure strategy profile  where  both 
prisoners do not cooperate with prosecutor)  while the
equilibrium is  the pure   strategy profile  where both  prisoners go for plea bargaining 
(known as defection). The equilibrium , can be found by domination but cooperation 
between prisoner's give them better result.
To go for the Nash solutions they should trust each other or be afraid of punishment for 
breaking the code of silence.
The plea bargaining is used precisely to break  the code of silence. Probably, it is better 
for use to break the code of silence and keep the prisoners  where they belong.

On the other hand  Prisoner's Dilemma can be interpreted as an 
arms race problem. The equilibrium means the unlimited arms 
race. The Nash solution is a treaty restricting the race.
Since it is not an equilibrium the problem of trust and verification 
arises.
In some cases, arbitration may help.

Example. 19.2.  Find  the Nash bargaining solutions for Example 8.4, i.e.,   



for the bimatrix game

Players R, C C1 C2 C3 C4
R1 5, 3  0,2 0, -2 0, 3
R2 1, 0 0, 0 0, 0 0, 0
R3 2, 2 -1, 0 4, 6 1, 1

Solution. What  R can get in spite of C? This is the value  x0  of 
the matrix game

5  0  0  0 
1  0  0  0 
2 -1  4  1

We have a saddle point  (R1, C2)  so  x0   = 0.

What  C can get in spite of R? This is   the value   y0   of the 
matrix game

   R1 R2 R3
C1  3  0  2
C2  2  0  0
C3 -2  0  6
C4  3  0  1

We have a saddle  point  (C1, R2) so   y0 = 0.

Now we draw the joint payoffs and their mixtures. We get the 5-
gone with the corners (0,  -2), (5, 3),  (4, 6), (0, 3), (-1, 0). 
The Pareto optimal solutions are the mixtures of  (5, 3) and  (4, 6). 
This is a   side of the 5-gpn with negative slope.



(The  other side with negative slope  has no Pareto optimal 
points.)
Now we maximize   xy  on the mixtures X   of  (5, 3) and  (4, 6).
Using the slopes, we see that   3x + y = 18 on X.
To maximize  3xy on the straight line    3x + y = 18   containing X, 
we set
3x = y   = 9   hence  x = 3  and  y = 9. But this optimal solution  on 
the line is outside  X. 
It is on the left of X, and (4,6) is the point of X closest to  the point 
(3, 9).
Thus, (4.6) is the Nash solution (arbitration pair) in terms of joint 
payoffs.
The corresponding strategy profile (joint strategy) is (R3, C3).

This strategy profile happens to be an equilibrium.
It also happens to be the only optimal  solution if we maximize the 
total payoff.
It is  a coincidence in both cases.

Remark.  The optimal solution to  xy ->, max  subject to , x + y = s with given s ≥ 0 is x = y = s/2.
Indeed  xy = x(s - x) = -(x- s/2)2 +  s2/4   increases when we come closer to x = s/2.

Remark.  If there is a point in H where both x and y are maximal,  this point 
is a corner. and  it is the only Pareto optimal  solution and hence it is the 
arbitration pair (x*, y*).
Conversely , if there is only one Pareto optimal solution in H that maximizes 
both x and y,   and it is (x*, y*). Thus, (x*, y*) can be easily found in this 
case.

The Pareto optimal solutions, if more than one, form  the connected 
union of some sides of  H with negative slopes.
If (x*, y*) is inside of a side, the slope of  (x*, y*) -  (x0,  y0)   plus the 
slope of the side is 0.
 If  (x*, y*) is a common corner of two sides, then the slope of  (x*, y*) -  
(x0,  y0)   is between  the absolute values of the slopes of the 



sides.
This allows us  to find fast the side or two sides which contain   
(x*, y*) by computing  the slopes of sides and 
the slopes  (x, y) -  (x0,  y0)   for corners  (x, y).

Namely, let (x1,  y1) , (x2,  y2) ,…  be the  Pareto optimal corners 
ordered by (increasing)  x.
We compute the slopes 
(y2 -   y1)/(x2 -   x1)  ,… 
of sides and their absolute values
s1 < s2 < , … ,
On the other hand, we  compute the slopes
ti = (yi  - y0)/(xi - x0) for i = 2,…  (we missed i = 1 because   it is 
possible that  x0 = x1).
We have  t2  >  t3 > … .

By bisection we find  the first   i  such that     ti   ≤   si -1. 
If  ti   =  si -1 . then  (x*, y*) =  (xi  , yi ).

If  ti  <  si -1, then  (x*, y*)  is inside the side     (xi -1, 
yi  -1), (xi  , yi  ) and  can be easily found from the 
condition
that  the slope of    (x*, y*) -  ( x0,  y0 )  is   si -1.

For instance,

i    0   1   2   3   5     6



xi   0    5    9  12  14  15  

yi   1   21   19  17  14  10         

We compute  s  and  t  :

i    0    1    2    3    5      6
xi   0    5    9   12    14    15  

yi   1   21   19   17    14    10  

si       1/2  2/3  3/2    4       

ti        4    2   4/3  13/14  3/5    =  

(yi -1)/xi 

So the point  (x*, y*) is inside the second side  with ends  (9, 19) 
and  (12, 17)
and the slope  -2/3. The ends and hence the whole side belong  
to the line
2x  + 3y = 75. 
We can intersect it with the straight  line passing through  (0, 1) 
with the slope 2/3
which is the line  3(y - 1)  =  2x.
An alternative  , suggested above  is solving the optimization 
problem
x(y-1) -> max on the line  2x  + 3y = 75.
The optimal solution is the same for
(2x)(3y) -> max subject to   2x  + 3y = 75.
We make the factors equal:
2x = 3y = 75/2 hence



x = 75/4, y = 25/2 is the optimal solution.
This point is a mixture of  the ends  (9, 19) and  (12, 17) of  the 
side:
(x*, y*) = (75/4, 25/2) =  α(9, 19)  + (1 - α)(12, 17)  for  α = ?.

Example. 19.3.  For   1 by 5  bimatrix game

[ (1, 6), (2, 6), (3,5), (0,0), (3,4)]

find the  pure equilibria and the Nash bargaining solution.

Solution. There are two equilibria:
[ (1*, 6*), (2*, 6*), (3*,5), (0*,0), (3*,4)].

Among given 5  (pure) payoffs, there  are  exactly two  Pareto optimal 
payoffs, namely, (2, 6) and (3, 5).
The mixtures M of  these two points  are exactly the side of the convex 
hull of given 5 points  with negative slope
The cornea of the hull are given 5 points.

The Nash solution belongs to  M. Now we compute the starting  point 
for Nash bargaining,
(x0, y0) =  (0,  6). 

The straight line containing  M is   x + y = 8.  We maximize  x(y - 6) on 
the line.
Since  x + (y - 6) =  2 on the line,
the optimal solution is  x  =  y - 6 = 1, hence x = 1 and y = 7. The 
closest point on the side M is (2, 6).  It satisfies the condition  
(x, y) ≥ (x0, y0), we have the arbitration pair  (x*,  y*) = (2, 6).
In the corresponding joint strategy, 
the second player chooses the second column and he first player has 
no choices.

Example 19.4. For any 1-player game, the Nash bargaining gives 



an optimal strategy and the value of game.

Example 19.5. Among the points (0,0), (1,2),  (4,5), (2,7), (4,6), 
(5,5), (6,4), (7,2)  and (8, -5) on plane, find the Pareto optimal 
points.
Also find the Pareto optimal points in the convex hull of the points.

Solution. The Pareto optimal  are   (2,7), (4,6), (5,5), (6,4), (7,2)  
and (8, -5).
In the convex hull, the Pareto optimal points are covered by the 
polygonal path
 (2,7), (4,6), (5,5), (6,4), (7,2),  (8, -5).
The path includes the point (5, 5) which is a mixture of  (4,6), and 
(6,4),

Remark 19.6. For game with  any number N  > 0  players P1,…, 
PN , the Nash bargaining can be  done the same way.
We each player P we compute P's maximal worst-case payoff  
v(P)  against the other players who together try to minimize 
P's payoff. It is the value of a matrix game.
The N-tuple   x0 = [v(P1),…, v(PN)]    is an initial point for 
bargaining.

We  consider  the mixtures  (he convex hull) of all  joint payoffs 
and its part   H  cut out  by the constraints   xi ≥ v(Pi) for all i.
We consider  the product f(x)  of t all entries in  x - xo which are 
not identically 0 on H and then maximize  f(x) over H. This 
mathematical program always has exactly one  optimal solution 



x*.  This  x* is always Pareto optimal, i.e.,there is no other x' with 
x' ≥ x*.  This is true because when x is not Pareto optimal, we can 
increase or keep the same every factor in f(x). 
This x* is the Nash solution for joint payoff. It is a  unique  mixture 
of corners of H.

if the Pareto optimal solution is unique, it is the   Nash bargaining solution 
x*.
Another case when it is easy to find x* is when only   two factors 
stay in  f(x). Then H is a convex polygon in a plane.
In general,  computationally, it could be much more difficult to find  
x* for N > 2 than for N = 2  

The number of corners in H is small - it is a part of given pure joint payoffs.
The Nash solution belongs to one of finitely many faces. Every face span a hyperplane 
given by a linear equation ax = b with  a ≥ 0, so the optimal solution  on the hyperplane 
can be u found rather easily using the fact the product of nonnegative factors with given 
sum reaches its maximal value when all factors are equal.
But in higher dimensions it is not easy to get the optimal solution on the 
face, and 
the number of faces could be so big that we cannot even  to list all faces.

Remark.  The initial point    (x0  y0)  for Nash bargaining in a 
bimatrix game  need not be a mixed joint strateg.
But what if  for a bimatrix game there is no mixed joint payoff (x,y) 
such that  (x,y)  ≥  (x0  y0) ? Answer: this never happens.
Indeed, let the players be  X and Y, mmA' is the payoff matrix for 
X and A" is the payoff matrix for Y.
Let  p is and optimal strategy for the row player X for the matrix 
game with the payoff matrix A'. Then
 x0 = min (pTA'), the maximal worst case payoff for X.
Let  q be an optimal strategy f for the row player Y or the matrix 



game with the  payoff matrix A"T.
Then  y0   = min(qTA"T), the worst-case payoff.

For the mixed joint strategy  (x, y) =  pT(A', A")q we have   (x,y)  ≥  (x0  
y0). 

Exercises to §19.

Exercise 1  Do the Nash bargaining for the bimatrix game

5, 1  2, 1

0, 1   6, 2

Exercise 2.  Do the Nash bargaining for the bimatrix game

1, 2   3, 4  -1,-3   9, 5

3,1  -1, 2     3,3     0,5

  Remark. Besides the bargaining scheme above, Nash suggested a 
more complicated scheme which takes in account threats. See

Bargaining problem - Wikipedia
Credible Threats in Negotiations : A Game-Theoretic Approach by Harold Houba , and Wilko 
Bolt
Kluwer Academic Publishers 20096   (ebook is available at the library).

The Bargaining Problem  by : John F. Nash, Jr. Econometrica,  Vol. 18, No. 2 (Apr., 1950), pp. 
155-162  

https://en.wikipedia.org/wiki/Bargaining_problem
https://en.wikipedia.org/wiki/Bargaining_problem
https://en.wikipedia.org/wiki/Bargaining_problem


Two-Person Cooperative Games by : John Nash Econometrica,  Vol. 21, No. 1 (Jan., 1953), pp. 
128-140  

Symmetric games. A bimatrix game is symmetric if transposing 
the bimatrix and switching the payoffs give the same bimatrix.
Examples include Battle of Sexes, Prisoner;s Dilemma, Steal or 
Share, and all symmetric matrix games.
For any symmetric game, x0 = y0  for the disagreement point 
and  x* = y* for the arbitration pair. So the arbitration pair is the 
only Pareto optimal point on the line  x = y.

 

§20. Coalitions. Shapley values.

Now we consider the situation when side payments are free and not 
restricted.

(In real life, side payments are often possible but difficult and not free. 
Sometimes they are regulated by law.)

Then the players go for the maximal total payoff and then decide how 
to distribute (or redistribute) 
Sometimes, arbitration is involved.

Shapley suggested a way to do it. The Shapley values (how 
much each player  gets)  exist and unique for every finite 
normal form.
 
We want to find a fair value for each player. What did the player 



contribute  to achieving the maximal total payoff?

Definition 20.1. A coalition is a set of players. 

For  a game with N players,  there are 2N coalitions.
One of them,  has no players  (empty coalition ∅).  The grand coalition 
includes all players.

20.2. Characteristic function. For any coalition S, its "value" v(S) is the 
maximal   total payoff  the coalition can get in spite of the other 
players.
When S has a player but not all of them,  v(S)  is  the value of an  m  
by  n    matrix game where  m is the number of joint strategies of 
players in  S  and  n  is the number of joint strategies of the other 
players. (We start with  a finite normal form.)
For the empty S, v(S) = 0.  For the grand coalition S, v(S) is the 
maximal total payoff.
In the previous section, we had v(S) in the case when S consists of a 
single player.
This part of the characteristic function was used to start  the Nash 
bargaining.

20.3. Contribution of a player P to a coalition S is defined as
v(S) - v(S  ∖  P).

20.4. For disjoint coalitions  S and S', it is clear that  v(S ∪  S' ) ≥ v(S) + v(S').
In particular, the contribution of any player P to any coalition including P is ≥ v(P).

The Shapley value for a player  P is P's average contribution.
Here is a way to define it.

Consider an N!  by  N  table where columns correspond to  the players and the  rows  
correspond to the permutations of the players. The permutation is considered as a coalition 
which grows from the empty coalition to the grand coalition. 
The number corresponding to a growing coalition and a  player P is the P's contribution to the 
first coalition including P.



The sum of numbers in each row is  v(grand coalition).
The Shapley value  s(P) for a player P is the mean of numbers in P's column.
That is, it is the sum divided by N!.

It is clear that  s(P)  ≥ v(P) and that the sum of all Shapley values is v(grand coalition).

There are repetitions in the matrix so s(P)  is a weighted  average for a smaller than  N!  
numbers.

20.5. An imputation is an N-tuple  T  = (TP) indexed by the players P such that    TP  ≥ v(P)  for 
all P 
and the sum of all  TP  is  v(grand coalition).

So the Shapley values form an imputation. 
Sometimes there are no other  imputations. This happens if and only is the sum of all v(P) is
v(grand coalition). In this case, s(P) = v(P) for all P.

The Shapley values are determined by the characteristic function and that different normal 
forms may have the same characteristic function.
They exist and are unique. 

It is easy to define the Shapley values, but computing them for large N is a big challenge.

20.6. For  2 players, A and B.

               A                          B
A, B          v(A)                   v(A, B)- v(A)
B, A     v(A, B) - v(B)                  v(B)
2s      v(A, B)+v(A)-v(B)      v(A, B)-v(A)+ v(B) 

Example 20.7.    Find  the Shapley values for the bimatrix game

Players R, C C1 C2 C3 C4
R1 5, 3  0,2 0, -2 0, 3
R2 1, 0 0, 0 0, 0 0, 0
R3 2, 2 -1, 0 4, 6 1, 1

(The game is the same as in Examples 8.4 and 19.2.)

Solution. We have v(R, C) = 10  (the maximal total payoff).
By 19.2, v(R) = v(C) = 0.  By 20.6,
s(R) = s(C) = 5.



Exercises to §20.

Exercise 1. The characteristic function  for 3 players A, B, C is

v(A) = 1, v(B) = 2, v(C)  = 3, v(A, B) = 4, v(A, C) = 5, v(B, C) = 6, v(A, B, C)  =  12.

Compute the Shapley values  s(A)  , s(B) ,  and s(C).

Exercise 2  Compute the characteristic function of the 3-player game given by the normal form

strategy      payoff
A   B   C     A  B  C   
L   L   L     0  1  2
L   L   R     3  4  5
L   R   L     4  4  0
L   R   R     0  1  1
R   L   L     0  1  2
R   L   R     1  1  1
R   R   L     1  0  0
R   R   R     0  0  2
where players are  A, B, and C and each has 2 strategies, L and R.

§21. Examples.

Examples 21.1-2. See  Midterm 3| sol |     for 2   examples with solutions.

Examples 21.3-4. See Midterm 3    | solutions |    for 2 more examples with solutions.
 
Example  21.5. You are the 2nd player in the 1 by 2 bimatrix game

C1         C2
(1,0) , (-1, 0))

Explain your choice, C1 or C2.

Remarks.  This was Problem 1 in Quiz 1 on Nov 8, 2017 for 5 pts.
Example 19.3 above is very similar but bigger.
Section 2 was worned   on Monday about q1 on W. 
I tried to warn Section 2 about  a quiz  on Th by a remarks on h7, but  by my mistake,  they 
did not get the warning.
But  q1 participation     in Section  1 was higher the in Section 2, I do not know why.
I excluded 21.5 from q1 in Section 1.

Solutions to  21.5.  Here 1-10 are samples of student' solutions with the points they received 
and with my comments; 

http://www.math.psu.edu/vstein/S11m3.html
http://www.math.psu.edu/vstein/S11m3s.html
http://www.math.psu.edu/vstein/S10m3.html
http://www.math.psu.edu/vstein/S10m3s.html


11-12 are Nash (nobel prize 1994)   and Shapley  (Nobel; prize 2012)  solutions; 12-13 are 
hypothetical student solutions,
followed by my additional comment. This problem generated a big  reverberation   in  students 
and  hence  in  me.
So it was a good opportunity to learn (including for students in Section 1 who did not see it in 
their q1)  which was what I hoped for.

Here are samples of student's solutions.

1.  I choose C2 because then 1st player loses 1 and I get it.
My response: You do not get it. You get 0.    

2. I choose C2 because I want to minimize my partner's payoff.
My response:  5 pts. I did not teach you to do this. But you gave an answer and an explanation, 
hence you get 5pts.
Your solution  makes sense in some situations, e/g.. when you hate 1st player and want him to 
know this.
He might hate you back for this.

3.  I get nothing in both cases  So It does not matter, C1 or C2.
My response: 5 pts. Sometimes, you have to choose,  do not be  a Buridan's ass.
  

4. Both are equilibria.   So It does not matter, C1 or C2.
My response: 5 pts. Also all mixtures are  equilibria. So  the 
equilibrium  is not a good answer.
We all strive for an equilibrium but is not always the answer. 
Sometimes the answer is bargaining, compromise, coalition 
forming,  and cooperation.  Sometimes you  have faith and  trust 
other players.
Sometimes somebody  or the law enforces cooperation.

5. My choice is a mixed strategy (C1 + C2)/2 because it is fair. Both 
players get 0.
My response: 5 pts. I did not teach you to do this. But fairness could 
be an important
issue in some cases. Fairness means different thing for different 
players. 
It is not always the same payoff for everybody.
Some believe the ideal fairness is when everybody has nothing.
If you have no car and your neighbor has it, is it fair?
Is it OK to demand sharing the car?

https://en.wikipedia.org/wiki/Buridan%27s_ass


How about bargaining for sharing, saying: I will choose C1 if you  do 
share your payoff.
Each may get 1/2 instead 0 in your choice.
A version of a fair society is described in  Animal Farm by a 
democratic socialist.
Here is a version of fairness by Karl Narx: (see 1.3 above):
to each according to his needs
But who determines you needs? Is it Karl Marx or Pol Pot?
Pol  Pot decided that you do not need cars, electricity, or 
phone. Is it fair?
Should everyone  have the same needs?
Fairness - Wikipedia

6. I chose to minimize other person  output , if I receive 0 regardless.
My response: 0 pts.  I do not  understand what you mean by "output". 
The first player has no choices.  Maybe you and some other students have no idea
what the bimatrix game is.  Maybe, you made your choice at random and learned too little 
to write anything which makes sense.

7. I go for C2 because it is an equilibrium.
My response.  5 pts. (More precisely, (R1, C2) is an equilibrium.)
But (R1, C1) is also an equilibrium and so is every mixture of  the two pure equilibria (saddle 
points).
Is the concept of equilibrium  useful in this game?

8. I go for C2 because it is the equilibrium.
My response.. 0 pts. There are equilibria with different payoffs.

Here is the solution  I expected.  Let R and C be names of the players and R1 the name for the 
only strategy of the row player R.

9. The Nash bargaining solution  in terms of joint strategies,is  (R1, C1). The payoff there, the 
arbitration pair,   is  (1, 0).
 is  the Nash bargaining solution in terms of joint payoffs. 
The arbitration pair is always Pareto optimal, and we have   only one Pareto optimal mixed joint 
payoff, namely  (1, 0).
There is no need to compute the starting point (v(R), v(C) = (-1, 0) for Nash bargaining.
So I (the second player C) choose C1 to get this  joint payoff (1, 0). 

10. For the Shapley values, (s(R), s(B)) = (0, 1),  see the computation in  20.6.
There is only one way to get the maximal total payoff 1:  I have to chose C1.

https://en.wikipedia.org/wiki/Animal_Farm
https://en.wikipedia.org/wiki/Democratic_socialism
https://en.wikipedia.org/wiki/Fairness
https://en.wikipedia.org/wiki/Fairness
https://en.wikipedia.org/wiki/Fairness


So the Shapley values also take me to C1.
The  payoff (1, 0)  at (R1, C1)  is redistributed to the Shapley values (0, 1).
So I am happy with the Shapley solution.
The player R should  be happy too because I could choose the payoff -1 for R.

Here is 2 hypothetical student's solutions without points or comments.

11. I chose C2 because the game describes  the following situation. R attacked me so I knocked 
him down unconscious.
Then I prefer to finish him (C2) rather than call 911 to help him (C1).

12. I chose C2 because the game describes  the following situation.  On response to a question 
when bonus points would be posted,
the instructor asked class for  volunteers to help  him to process bonus points.
But it was his job.   Moreover  a student could  see the grades of other students.
This is illegal and everybody  knows this.
So instead of helping   (C1 option) I went to his boss to protest (C2 option). 
I protested not for a reward,  but to enforce the law. It is illegal to pay a student for help. 
Without my  complaint,  he would go further by requesting  a student to grade my homework, 
another violation of law.
Also I have right to talk with the instructor until I get points I need to pass.
I need to pass so badly that I have priority over other students who want to talk with him.
It is OK with me if they learn the right way to get points because I do not try to minimize their 
grades.

The C2 choice is contagious,  and no society can survive  without cooperation and good will. 
But it is not my job to force my opinions on you. My job  is point out that there are different 
options, and sometimes there is no option which
is the best for everybody.  Education may help you to make better choices.
It is not my job to teach you how  to treat other humans and yourself. But it my job, starting this 
semester, to inform you that Penn State provide help to students with mental problems.
So if you feel unhappy, mistreated, or  betrayed, see the link in the syllabus. 
It is also my job to point out that Penn State has penalty for
lying to instructor in order to improve your grade,
class direction,
unruly behavior,
and other violations  of Penn State policies and rules. 

It is natural to try to be best but  hurting your competition can be punished, see Example 21.7 
below.

I encourage you to help your classmates and me to learn, but doing their homework for them 
does not help them to learn.
See
Sportsmanship - Wikipedia
Sportsmanship is an aspiration or ethos that a sport or activity will be enjoyed for its own sake, 

with proper consideration for fairness, ethics, respect, and a.    
and be a good sport  [ Good sport ].

https://en.wikipedia.org/wiki/Sportsmanship
https://en.wikipedia.org/wiki/Sportsmanship
https://en.wikipedia.org/wiki/Sportsmanship
http://www.dictionary.com/browse/good-sport


Example  21.6.  Make your choice in 2 by 2  bimatrix  game

C            D
3, 3      0, 5
5, 0      1, 1

Remarks. It was in qi in both sections in two versions: you choose your partner or you partner is 
the whole class, 5 pts for each version.
was in q1 in both sections.

We do not know what "solve 
this game" means unless it is a 1-player game or  a 2-player constant-sum game.

Both  Nash bargaining and Shapley values lead  to (3, 3).
However D dominates C. So if I do not trust my partner, I may  go for D.
There are thousands publications on Prisoner's Dilemma, and more are coming.
Obviously, no solution makes everybody happy.

Our game  is a  Prisoner's Dilemma. However  the numbers (payoffs)  vary,  sometimes even 
within the same book (e.g.  our textbook).
A change in numbers may result in the Nash and Shapley solutions different from (C, C).

A student commented in class:  My choice depends on my mood.
My comment. Do not pet a hungry crocodile.
More seriously,  a student of mine got Ph.D.  exploring games where players have different 
moods.

A student  asked: What was the  composed choice of class in 21.6?
My response. Approximately, it was (C + 2D)/3 in Section 2 at the Quiz 1  
and (2C + D)/3 in Section 1 at Quiz 1
the next day. 
Would  not you like to know this before the quiz?
The average score was lower  in Section 2  where D players are in majority 
even when they play with a partner the choose.
See Example 21.10 below.

A question.  Does it help to have a little chat with my partner before playing a game?
My response. It may help you,  your partner, or both,  see Split or Steal in  clips.

A complaint. I do not want to play Prisoner's Dilemma because my payoff depends on what  my 
partner  does.
I am not a prisoner, and you cannot make me to play.
My response. You cannot avoid games where your payoff depends on other players choices.
The Unabomber tried by living without electricity and phone. But he depended on US Postal 

http://www.math.psu.edu/vstein/clips.html


Service.
His brother  played D   so the Unabomber is a prisoner now. There is electricity and phone 
there.
When you approach a 4-way stop,  you life depends not only  on your choices but also on 
another driver's choices.
When you walk on campus to a class, your life  may depend on a terrorist driving a van.

Many instructors at Penn State use teams , peer reviews, curving  or grading systems where  
your grade  depends on other students  actions.
When you want to register for a class you may find that the class is full and you cannot register. 
If you want to be #1 in class, another student may stop your dream for coming true.

Big line to bathrooms in a movie theatre  are possible when you really need a bathroom. 
You can be a hermit in a cave  but still depend on visitors bringing you   food.
We are depend on each other so try  to use cooperation rather than demanding total  and 
complete independence.

 If you got no points because your explanation did not make sense or was absent, it was 
independent of your choice or other student choices.
It is OK if you try to  explain  your  q1 to me using what you learned after the test.

Your scores in all tests are  independent on whether you wish As or Fs for other students or 
yourself.
Moreover I do not require you to tell me truth about wishes. In this country you can wish 
whatever you want. and keep your thoughts  private.
In some countries,  they use torture instead plea bargaining to extract truth or admission of guilt.

The game is a popular choice for publications on evolutionary game theory, see  §23.
The D players take advantage of C players, so  they  proliferate  (once one appears) when they 
are in minority and do not proliferate   when they are in majority.
This explain why  it is not often we see a population with D players in  2/3 majority.  

Evolutionary game theory  strives to address  this issue as well as the story about the croc mom 
above and so do ethics and  some religions.

21.7. Example based on a real life story. You  are the column player C  in  Example 21.5  (real 
name  Jeff Gillooly). 
Your ex-wife  TH  (real name Tonya Harding)   competes    in figure skating.
Her completion,  the row player  R in Example 21.5  (real name  Nancy  Kerrigan)  has  a better 
chance  to win.
You can do  nothing about this (option C1) and allow  R to win a medal.  Her payoff is 1 but 
yours is 0.
The  other option  C2   is to participate in a plot to break the right leg of R. You estimate the 
expected payoff for R is -1, but your payoff is 0 
because besides potential  rewards, you face  a prison  term. Your competitive spirit or stupidity 
lead you to C2 choice
Later, under prosecution, you choose plea bargaining (option D in Prisoner's Dilemma) to 
reduce your prison term to 2 years.
R's leg is not broken but damaged. She wins

https://en.wikipedia.org/wiki/Nancy_Kerrigan
https://en.wikipedia.org/wiki/Nancy_Kerrigan


1994 Olympic  silver medal. TH   finishes eighth. Later she also chose D and received  3 years 
probation  and other penalties.

21.8. Related to Example 21,5 is  Golden Rule
which is the principle of treating others as one would wish to be treated. It is a maxim of 
altruism that is found in many religions and cultures
Ancient Egypt, circa 4K years ago. Do to the doer to make him do
Ancient Egypt, circa 2.5K years ago.That which you hate to be done to you, do not 
do to another
Moses. Whatever is hurtful to you, do not do to any other person.
JC, Do unto others as you would have them do unto you definition
Islam. None of you [truly] believes until he wishes for his brother what he wishes for 
himself
Hinduism By making dharma (right conduct) your main focus, treat others as you treat 
yourself
Buddha. One who, while himself seeking happiness, oppresses with violence other beings who 
also desire happiness, will not attain happiness hereafter.
Confucius  What you do not wish for yourself, do not do to others

Maybe,  some religions discouraging cooperation or  
procreations disappeared? 
Golden Rule is discussed also in  secular context,  like  
philosophy  and human rights; there are different 
interpretations and criticism.
To apply Golden Rule to the case of Prisoner's Dilemma, you have to  replace 
your partner by yourself  and play  the game  for both players. So what is your 
choice,  CC,CD, DC, or DD,  in Example  21.6 below?
What if 5 in the example replaced by 7?

21.9. General matrix game with one row. The players are R and C.
       C1         C2      …

R1 [(a1,  b1), (a2, b2)  ,…

The equilibria are  the mixtures of the joint strategies  (R1, Cj) with  bj= max(bk)     = 
v(C) = y0.
The payoff  for  C is   v(C) at each equilibrium.  
The payoff for R varies   between   x1 =   min(ai |   bi = x0 = v(C)) ≥ v(R)                and         

https://en.wikipedia.org/wiki/1994_Winter_Olympics
https://en.wikipedia.org/wiki/Golden_Rule
https://en.wikipedia.org/wiki/Maxim_(philosophy)
https://en.wikipedia.org/wiki/Altruism
https://en.wikipedia.org/wiki/Culture
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https://en.wikipedia.org/wiki/Golden_Rule


and  x2 =   max(ai |   bi = x0).
So concept of equilibria does not say much about the payoff of R.
The arbitration pair  (x*, y*)  is  ( x2  , v(R)) game without side payment).
The Shapley values are (s(R), s(C)) = (v(R,C) +v(R) - v(C), v(A,B) -v(R) +v(C))/2 ≥ 
(v(R), v(C)).
So if  v(R) + v(C) < v(R,C)  then  s(C) > v(C)  and the player C should negotiate with R 
for redistribution of payoffs to get a better payoff   (game with  side payments).

Example 21.10. You play the prisoner Dilemma 21.6 

C            D
3, 3      0, 5
5, 0      1, 1

against the class with composition
(a) (2C + D)/3,
((b)  (C + 2D)/3.
What is your choice (C or D) ?
D strictly dominate C regardless of the class composition. So if you care only about your  
present  payoff, you go for D ignoring religion, ethics, and the future games.
However if you care about your partners or about your future , you should consider C 
(both Nash and Shapley choice) which means cooperation.
Note that the expected payoff in the case (a) is
(4/9)3 + (2/9)(5,+0)  + (1/9)  = 23/9
vs that in the case (b):
(1/9)3 + (2/9)(5,+0)  + (4/9)   =  17/9.
Thus, cooperation pays in this game. 
In more detail, you are better off in class (a) than in class (b) by
2 -1 = 1     if you play C
and by
11/3 - 7/3 = 4/3     if you play D.
So everybody wants to be in class (a), especially, D players.

In evolution game theory a bigger payoff is converted into better fitness (like  smaller 
death rate and bigger birth rate).
Thus, class (a)  has evolutionary advantage over class (b).
This gives an explanation why we still have a lot of C players around. 

Some authors believe that your family is the best place to learn   cooperation (family 
values).
Some learn cooperation in prison or army. 
The military term for sticking together is the unit cohesion.
Prison gang is an example of Inmate cooperation.



Example 21.11. Find the equilibria in pure strategies, the pure Pareto optimal payoffs, 
the characteristic function,  the Shapley values, and the Nash bargaining solution. 
Players: A, B, C 
strategies             payoffs 
1  1  1                      2  3  2 
1  1  2                      1  0  1 
1  2  1                      2  3  3 
1  2  2                      1  2  3 
2  1  1                      0  0  1 
2  1  2                      1  1  1 
2  2  1                      2  3  3 
2  2  2                      2  3  2 
3  1  1                      0  0  0 
3  1  2                      0  0  0 
3  2  1                      1  1  1 
3  2  2                      2  3  0

Solution. 
Three equilibria and one Pareto optimal triple (2,3,3): 
strategies                     payoffs 
1  1  1                      2* 3*  2*  equilibrium  strategy
1  1  2                      1  0  1 
1  2  1                      2*  3*  3*  equilibrium &  Pareto optimal 
1  2  2                      1  2  3 
2  1  1                      0  0  1 
2  1  2                      1  1  1 
2  2  1                      2*  3*  3*equilibrium &  Pareto optimal 
2  2  2                      2  3  2 
3  1  1                      0  0  0 
3  1  2                      0  0  0 
3  2  1                      1  1  1 
3  2  2                      2   3 0    

v(empty)=0, v(A,B,C)) = 8.

v(A) = 1 = the value of the matrix game

2 1*' 2 1
0 1 2 2
0 0 1 2

v(B) = 1 = the value of the matrix game

3 0 0 1 0 0
3 2 3 3 1*' 3



v(C) = 0 = the value of the matrix game

2 3 1 3 0*' 1
1 3 1 2 0 0

v(A,B) = 5= the value of the matrix game

5 1
5 3
0 2
5 5*'
0 0
2 5

v(A,C) = 4= the value of the matrix game

4*' 5*
2 4
1 5
2 4
0 2
0 2

v(B,C) = 3 = the value of the matrix game

B&C vs A c1 c2 c3
r11 5 1 0
r12 1 2 0
r21 6 6 2
r22 5 5 3*'

order         contribution 
                 A   B   C 
ABC          1   4   3 
ACB          1   4   3 
BAC          4   1   3
BCA          5   1   2 
CAB          4   4   0 
CBA          5   3   0
--------------- 
            10/3 17/6  11/6    Shapley values.

The Nash solution is (2, 3, 3)., the only Pareto optimal payoff.



Exercises to §21.

Exercise 1.  For the bimatrix game

Players R, C C1 C2 C3 C4
R1 2, 3  0,2 0, -2 0, 3
R2 1, 2 0, 0 0, 0 0, 0
R3 2, 2 -1, 0 4, 2 1, 1

compute
all equilibria in pure strategies,
the Nash bargaining solution,
the Shapley values.

Exercise 2. For  Exercise 2 in   §20, find the Nash bargaining solution.

Ch8. Advanced topics

§22. Repeated game wiki.     Fictitious play.

If the same game is played several times the players  may 
remember the past  (the previous strategy profiles and  payoffs) 
and make some predictions 
about the present round. In other words, your choice may depend 
on what happened in the past.
In the Morris textbook there is Section 5.2.4.  Supergames where  
this issue is discussed in the case of  Prisoner's Dilemma 
(the arms  race  interpretation is mentioned too).

https://en.wikipedia.org/wiki/Repeated_game
https://en.wikipedia.org/wiki/Fictitious_play


Here are some notations. We start with any game  G in normal form.  The 
payoff Fi for  player  i  is a real-valued function on the set of all   joint 
strategies.
The joint payoff  F  is the collection all   Fi .

Repeated (or iterated) game  RG  (called supergame in the 
textbook) may have two parameters: the number of repetitions  T  
(time horizon) which is an integer  ≥ 1 or infinity    (infinitely repeated 
game)
and  discount factor  δ   which  is a number  in the interval    0 ≤  δ   ≤ 1.

A joint strategy S(t)  at round  t  may depend on all   S(t')  with t' <  t. and the 
previous actual payoffs.

Note that   when mixed strategies  or chance are involved,  F(S(t) ) is  the 
expected joint payoff and  does not necessarily determine  the actual joint 
payoff.

We might want to find a dependence (learning)  such that  S(t)  
converges    in some sense to a desired "solution" for original game G. 
For example, in the fictitious play, which is a method of solving any 
matrix game,  S(t)   converges to the set of equilibria.

We  are interested in  the  repeated game   RG  which has the 
same set of players  where a  joint strategy RS consists of all  

S(t)  where   S(t)   is a function of  S(t')   with   
t' < t and the ß previous actual  joint payoffs  and  where the 
payoff RF  is defined as

(22.1)  RF(T)(RS) = F (S(1) )  +  δF (S(2) + … +  δT-1F (S(T) )
when T is finite, 

(22.2)  RF (RS)  = lim  inf  RF(t)(RS)  as  t  →	∞



when  T is infinity and    δ < 1.  and 

(22.3) RF (RS) =  lim inf  RF(t)(RS) /t
when T is infinite and  δ =  1.

Note that  RF  is well-defined when F is bounded (e.g., G is 
finite) or T is finite.  When  RF is not defined,   RG is not a 
game.
Often we scale   RF replacing total by an average, so     inf Ri ≤  

RFi   ≤  sup  Fi     for every player i.

Namely, we divide the right hand side of (22.1)  by   T
and  multiply  the right hand side of (22.2) by   1 - δ.
The right hand side of (22.31) is already scaled.
  

We would like  to solve this repeated game RG on one sense or 
another.

Remark. Double or Nothing  can be thought   an example of repeated game when  T is finite.
When T is infinite,  we have a big trouble to define the payoff  if we never win.

Fictitious  play was introduced by G. Brown as a way to solve any 
matrix game.  
The  first pure  joint strategy S(1)  is arbitrary.

The strategy   S(t+1)  
    is a best pure response to the mixed strategy  

(S(1)   +…+  S(t) )/t.
J. Robinson proved that   (S(1)   +…+ S(t) )/t. converges to  the 



equilibria for any matrix game.
The method is simple, intuitive, and robust. It seems that animals use 
it in experiments.
But convergence is slow. 

J. von Newman  modified the method to improve  convergence. 
Recent interior point methods give much  better convergence but they 
are much more complicated.
So the simplex method is still most common way to solve linear 
programs and matrix games.

The Iterated Prisoner's Dilemma and The Evolution of Cooperation   video 

The payoffs for Prisoner's Dilemma in 21.6 are taken from p.129 of the 
textbook. The general  Prisoner's Dilemma

     C      D
C (a, a)  (b, c)
D (c, b)  (d, d)

with  c > a > d > b  and  2a > b + c

is discussed on this page too. 
The arbitration pair and the  Shapley  values are both (a, a).
D strongly  dominates C, so (D,D) is the only equilibrium, with the 
payoff (d, d).

Exercises to §22.

Exercise 1. In Prisoners Dilemma (see 21.6  above) there are many 
complicated  strategies for the repeated versions.

Here are 4 simple (with S4   possibly excepted)   strategies:
S1.  I always choose C.
S2. I always choose D.

https://www.youtube.com/watch?v=BOvAbjfJ0x0


S3. I use Tit for Tat, i.e. I start with C and then I play the previous choice of my 
partner.
S4. I  play the best strategy I can find against Tit for Tat (describe your strategy).

Make the 4 by 4 table with the  mean joint payoffs matching each strategy with 
each one assuming that  
 the game is played 100 times.

Bonus points, namely p - 300,  will be given  where  p  is your total payoff in S4 
vs S3 match  when  your best response S4  to S3 is different from the other 
student's  S4.
In the above notations, T = 100 and  δ = 1.

 

§23. Evolutionary games.

Evolutionary game theory is used in population biology, economics, 
sociology, and computer science.
It is a big area with many publication, c.f.,  e.g., Evolutionary games wiki 60+ 
books.

E.g , you want  to write a good computer program to play chess.
There are many parameters in program, like values of chess pieces and 
evaluation method for  chess positions.
You can ask a computer to change parameters at random (mutations),  play 
different versions of the program  with each other ,
and select better versions. You watch survival of better versions.

Here are some remarks connected with  the presentation by the guest  
speaker.
If he was a student in class, I would give him 60 pts.
On the positive side, he generated some class participation.
On the other side, we ran out time.
The maximum score  I gave,  over 50 years  of teaching,  was 50 pts, to a 

https://en.wikipedia.org/wiki/Evolutionary_game_theory


student of Math 484 for a presentation on logic.

Fisher's principle  looks  dubious to me. By the way, Fisher  did not 
discover  Fisher's principle.
There is a much simpler explanation, for male/female ratio see the 
exercise below.
Here are some references.

Fisher's principle - Wikipedia
Historical research by A.W.F. Edwards[2][7] has shown that the argument is incorrectly attributed 
to Fisher (the name is in common use and is unlikely to change). Charles Darwin had originally 
formulated a similar but somewhat confused argument in the first edition of The Descent of 
Man[8] but withdrew it for the second edition[9] – Fisher only had a copy of the latter, and quotes 
Darwin in The Genetical Theory of Natural Selection.[1]
Specific

Human sex ratio - Wikipedia
In a study around 2002, the natural sex ratio at birth was estimated to be close to 1.06 males/
female.[9]

XY sex-determination system - Wikipedia
X chromosome    (proposed by a student).

The same Fisher is responsible for  95% standard in the confidence level.
But Fisher was flexible about the number 95. He wrote that if you do not  like the number, 95  use the number you like, e.g,,  90 or 
99.
Some think that 95% came from the number 2 for standard deviation in normal distributions.
But this not exactly true. Others do not know why 95 is use so often.
More recently, 97% became fashionable to indicate a greater level of confidence or overwhelming  
support  of the voters.
Politicians say sometimes that they are 110% or 200% sure but numbers  ≥ 100%  do not  sound  
scientific.

Evolution game theory helps  to understand evolution of species  , genes. and
 the learning behavior.

Evolution game theory explains  why many life forms not always 
rational in primitive sense. Here is the link to a video on altruism:
TEDxTalpiot - Oren Harman - The Evolution of Altruism It has a lot of emotions but little math.

https://en.wikipedia.org/wiki/Fisher%27s_principle
https://en.wikipedia.org/wiki/A.W.F._Edwards
https://en.wikipedia.org/wiki/Fisher%27s_principle#cite_note-Edwards98-2
https://en.wikipedia.org/wiki/Fisher%27s_principle#cite_note-Edwards00-7
https://en.wikipedia.org/wiki/Charles_Darwin
https://en.wikipedia.org/wiki/The_Descent_of_Man
https://en.wikipedia.org/wiki/The_Descent_of_Man
https://en.wikipedia.org/wiki/Fisher%27s_principle#cite_note-Darwin71-8
https://en.wikipedia.org/wiki/Fisher%27s_principle#cite_note-Darwin74-9
https://en.wikipedia.org/wiki/The_Genetical_Theory_of_Natural_Selection
https://en.wikipedia.org/wiki/Fisher%27s_principle#cite_note-Fisher30-1
https://en.wikipedia.org/wiki/Human_sex_ratio
https://en.wikipedia.org/wiki/Human_sex_ratio#cite_note-9
https://en.wikipedia.org/wiki/XY_sex-determination_system
https://ghr.nlm.nih.gov/chromosome/X
https://www.youtube.com/watch?v=db7li_TMJ0M


Nash and Shapley suggested two ways to solve  games. Both 
agree with equilibrium approach in the case of matrix games.
Evolutionary game theory suggests    a different framework.  Let 
different strategies to compute and the best will survive.
In the simplest case, we converge to the best strategy.
Warning: Equilibrium and evolutionary stable point is not the 
same as (Nash) equilibrium in game theory above.
In a  more complicated case we have a limit cycle.
But often we have a chaotic evolution which is hard to 
understand.

The speaker (in Section 1 on Nov 16) used the following game:
The game of chicken, also known as the hawk–dove game or 
snowdrift game,[1] is a model of conflict for two players in game 
theory.
 The   difference between   Prisoner's Dilemma and Dove&Hawk  is  that  D 
dominate C in the first  game
whereas  there is no domination in the second game. 

Exercises to §23.

Exercise 1.   Consider a population of a big size N with 80%  of females and 20% 
of males.

So we have 0.8N females and 0.2N males.

Suppose the death rate is a% for females and b% for males per year.

Suppose that the number of babies born  each year is c% of the number of 
females.

Assume 50/50 ratio of male/females   for newborns.

So the next year we have

https://en.wikipedia.org/wiki/Chicken_(game)
https://en.wikipedia.org/wiki/Chicken_(game)
https://en.wikipedia.org/wiki/Chicken_(game)#cite_note-1
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Game_theory


0.8N - (a/100)0.8N + (c/100)0.8N/2 females

and 0.2N - (b/100)0.2N + (c/100)0.8N/2 males.

Compute  the number of males  and females in T years when

(a) a = b = 2, c = 1 and T = 10,  

(b) a = 1, b =  2, c = 3, and T = 10.

(c) (bonus) Compute the limit of the ratio  #males/#females as T → ∞ in the case 
a< 2c.
(d) (bonus) Find  a,b, and  c  producing the  1.06 males/female ratio.

Hint. If we have   f females and m males this year, then the numbers  f' and m' for the 
next year are obtained as follows:

⎧f'⎫      ⎧1-a/100 +c/200  0 ⎫     ⎧ f ⎫
｜  ｜  =  ｜                  ｜     ｜   ｜
⎩m'⎭      ⎩c/200      1-b/100⎭     ⎩ m ⎭

Any population with  f = 0, disappears  ( f stays 0 and  m -> 0  as T → ∞  
assuming  0 < b ≤ 100).
In case  (a),  the population with  f = m is stable. 
The limit ratio  probably is the ratio  of two entries of an eigenvector.

If we do not distinguish males and females, we have a simpler model but them we do not have male/
female ration.
We simplify  real life situation ignoring the fact that both birth and death rates depend on age.
Also we inure many other factors like learning behavior (smoking, healthy food, etc) and interactions with 
other species (mosquitos, viruses, crocodiles, sharks, etc)
that effect your fitness.

In the first known example of population dynamics, Fibonacci 
[Fibonacci number - Wikipedia]  wrote about rabbits. He took 
in account the age.
The golden ratio appears as a limit ratio.
His main goal was to promote the positional (numeral) system  
we use now rather than to alarm us by exponential growth of 

https://en.wikipedia.org/wiki/Fibonacci_Rabbits
https://en.wikipedia.org/wiki/Fibonacci_Rabbits
https://en.wikipedia.org/wiki/Fibonacci_Rabbits


the rabbit population.
He did not know about rabbits in Australia (which we 
discussed in Section 2) because Australia was not discovered 
by Europeans yet, and had no rabbits at that time anyhow.
He did not know that     the Fibonacci numbers were known in 
India  for many years before he was born. 

§24. Auctions
Auction theory - Wikipedia
Types of auction. There are traditionally four types of auction that are used for the allocation of a 
single item: 
. Second-price sealed-bid auctions (Vickrey auctions) in which bidders place their bid in a sealed 
envelope and simultaneously hand them to the auctioneer.
General idea · Types of auction · Game-theoretic models · Revenue equivalence

Auction - Wikipedia
Sealed first-price auction or blind auction, also known as a first-price sealed-bid auction (FPSB). 
In this type of auction all bidders simultaneously submit sealed bids so that no bidder knows the 
bid of any other participant. The highest bidder pays the price they submitted.
History · Types · Common uses · Bidding strategy

Exercises to §24.

Exercise 1. It is a simple auction  with the deadline  at noon. You 
can see the previous offer and you  can beat it by at least $1.
Do you 
(A) bid now, at  9a the highest price you can afford and wait till 
noon to see whether somebody overbids you and pays a 
ridiculously high price,
(B)  bid as often as possible until price becomes too high for you,
(C)   wait for the last moment and overbid by $1  if the price  is not 
too high.

 ————————————————————

https://en.wikipedia.org/wiki/Auction_theory
https://en.wikipedia.org/wiki/Auction_theory#General_idea
https://en.wikipedia.org/wiki/Auction_theory#Types_of_auction
https://en.wikipedia.org/wiki/Auction_theory#Game-theoretic_models
https://en.wikipedia.org/wiki/Auction_theory#Revenue_equivalence
https://en.wikipedia.org/wiki/Auction
https://en.wikipedia.org/wiki/Auction#History
https://en.wikipedia.org/wiki/Auction#Types
https://en.wikipedia.org/wiki/Auction#Common_uses
https://en.wikipedia.org/wiki/Auction#Bidding_strategy


Rational interpretation again.
"Suppose that somebody even cleverer than Nash or Von 
Neumann had written a book that lists all possible games along 
with an authoritative recommendation on how each game should 
be
played by rational players. Such a great book of game theory 
would necessarily have to pick a Nash equilibrium as the 
solution of each game. Otherwise it would be rational for at 
least 
one player to deviate from the book’s advice, which would 
then fail to be authoritative."
 Ken Binmore Game Theory: A Very Short Introduction Oxford 2007.  pages 14-15.
Now when we know the  ultimate truth about all games  from 
somebody "even cleverer   than  Nash or Von Neumann " via 
the great prophet, 
we have  only few problems still open, like
How will  the universe end?  
Can machines think?
Who am I?

The  idea of a great book of ultimate (absolute)  truths  (or secrets) is the 
theme    of many films, book, and  religions.
Binmore does not claim the book exists, but he knows what should be 
there.

So what is the best move, C or D in Prisoner's Dilemma?

Binmore says it is D. He and many others  treat  us like  children  or 
prisoners who should not cooperate  with  each other and never question 
the boss.
This is convenient if you are the boss. You do not want others to be 
assertive and aggressive.



On the other hand, I know an instructor  who  teaches his students: never 
take "no" as the answer. He risks  being harassed by students demanding 
a better grade.
He hopes this hawkish style will help students in life.

So what is my answer?  Be smart and decide yourself  when to play C and 
when to play D.
Do not be always C or always D player. Consider Tit for Tat and other 
strategies.
Sometimes, you do not want  to be predictable.

A student said that cooperation cannot be enforced. But it can 
be. In usual interpretation of Prisoner's Dilemma, there is Code 
of Silence for C.
In general, there are contracts, agreements, and treaties which 
can be enforced legally.

Here are two videos by 
Martin Andreas Nowak (born April 7, 1965) is the Professor of Biology and 
Mathematics 
and Director of the Program for Evolutionary Dynamics at Harvard University.
Both videos mention repeated Prisoner's Dilemma.

Martin Nowak: 'The Evolution of Cooperation' | 2015 ISNIE Annual Meeting - YouTube

Supercooperators: The mathematics of evolution, altruism and human behaviour

 

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEvolutionary_dynamics&data=02%7C01%7Clxv1%40psu.edu%7C118bdb8a69d748fcbb3208d65b458e1d%7C7cf48d453ddb4389a9c1c115526eb52e%7C0%7C0%7C636796751626156470&sdata=KNw%2Fc8OU%2FDmfAB1awJGRhe3t51MxlicMqOsBDOuBNMw%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHarvard_University&data=02%7C01%7Clxv1%40psu.edu%7C118bdb8a69d748fcbb3208d65b458e1d%7C7cf48d453ddb4389a9c1c115526eb52e%7C0%7C0%7C636796751626166477&sdata=7Fk8U58yTgJf0HhSz%2FIull3hCFpnI13sGPgBIzgecjk%3D&reserved=0
https://www.youtube.com/watch?v=A8Y0kCdYoug
https://www.youtube.com/watch?v=i3plwTxdSO4
https://www.youtube.com/watch?v=i3plwTxdSO4



