NUMBER THEORETIC PROPERTIES OF WRONSKIANS OF ANDREWS-GORDON SERIES

ANTUN MILAS, ERIC MORTENSON, AND KEN ONO

Abstract. For positive integers $1 \leq i \leq k$, we consider the arithmetic properties of quotients of Wronskians in certain normalizations of the Andrews-Gordon q-series

$$
\prod_{1 \leq n \not \equiv 0, \pm i} \frac{1}{(\bmod 2 k+1)} \frac{1-q^{n}}{}
$$

This study is motivated by their appearance in conformal field theory, where these series are essentially the irreducible characters of $\mathcal{M}(2,2 k+1)$ Virasoro minimal models. We determine the vanishing of such Wronskians, a result whose proof reveals many partition identities. For example, if $P_{b}(a ; n)$ denotes the number of partitions of n into parts which are not congruent to $0, \pm a(\bmod b)$, then for every positive integer n we have

$$
P_{27}(12 ; n)=P_{27}(6 ; n-1)+P_{27}(3 ; n-2) .
$$

We also show that these quotients classify supersingular elliptic curves in characteristic p. More precisely, if $2 k+1=p$, where $p \geq 5$ is prime, and the quotient is non-zero, then it is essentially the locus of characteristic p supersingular j-invariants in characteristic p.

1. Introduction and Statement of Results

In two-dimensional conformal field theory and vertex operator algebra theory (see [Bo] [FLM]), modular functions and modular forms appear as graded dimensions, or characters, of infinite dimensional irreducible modules. As a celebrated example, the graded dimension of the Moonshine Module is the modular function

$$
j(z)-744=q^{-1}+196884 q+21493760 q^{2}+\cdots
$$

(see $[\mathrm{FLM}]$), where $q:=e^{2 \pi i z}$ throughout. Although individual characters are not always modular in this way, it can be the case that the vector spaces spanned by all of the irreducible characters of a module are invariant under the modular group [Zh]. For example, to construct an automorphic form from an $\mathrm{SL}_{2}(\mathbb{Z})$-module, one may simply take the Wronskian of a basis of the module. In the case of the Virasoro vertex operator algebras, such Wronskians were studied by the first author (see [M1], [M2]) who obtained several classical q-series identities related to modular forms using methods from representation theory.

[^0]Wronskian determinants in modular forms already play many roles in number theory. For example, Rankin classified multi-linear differential operators mapping automorphic forms to automorphic forms using Wronskians [R]. As another example, the zeros of the Wronskian of a basis of weight two cusp forms for a congruence subgroup $\Gamma_{0}(N)$ typically are the Weierstrass points of the modular curve $X_{0}(N)[F a K r]$.

In view of this connection between Weierstrass points on modular curves and Wronskians of weight 2 cusp forms, it is natural to investigate the number theoretic properties of Wronskians of irreducible characters. Here we make a first step in this direction, and we consider an important class of models in vertex operator algebra theory, those associated to $\mathcal{M}(2,2 k+1)$ Virasoro minimal models. These representations are important in conformal field theory and mathematical physics and have been studied extensively in the literature (see [FF], [KW], [M2], [RC] and references therein).

We shall need some notation. Throughout, suppose that $k \geq 2$ is an integer. Define the rational number c_{k} by

$$
\begin{equation*}
c_{k}:=1-\frac{3(2 k-1)^{2}}{(2 k+1)} \tag{1.1}
\end{equation*}
$$

and for each $1 \leq i \leq k$, define $h_{i, k}$ by

$$
\begin{equation*}
h_{i, k}:=\frac{(2(k-i)+1)^{2}-(2 k-1)^{2}}{8(2 k+1)} . \tag{1.2}
\end{equation*}
$$

Let $L\left(c_{k}, h_{i, k}\right)$ denote the irreducible lowest weight module for the Virasoro algebra of central charge c_{k} and weight $h_{i, k}$ (see [FF], [KW], [M1]). These representations are \mathbb{N} gradable and have finite dimensional graded subspaces. Thus, we can define the formal q-series

$$
\operatorname{dim}_{L\left(c_{k}, h_{i, k}\right)}(q):=\sum_{n=0}^{\infty} \operatorname{dim}\left(L\left(c_{k}, h_{i, k}\right)_{n}\right) q^{n} .
$$

It is important to multiply the right hand side by the factor $q^{h_{i, k}-\frac{c_{k}}{24}}$. The corresponding expression is called the character of $L\left(c_{k}, h_{i, k}\right)$ and will be denoted by $\mathrm{ch}_{i, k}(q)$. It turns out that (see [RC], [KW])

$$
\begin{equation*}
\operatorname{ch}_{i, k}(q)=q^{\left(h_{i, k}-\frac{c_{k}}{24}\right)} \cdot \prod_{1 \leq n \neq 0, \pm i} \frac{1}{(\bmod 2 k+1)} \frac{1}{1-q^{n}} \tag{1.3}
\end{equation*}
$$

Apart from the fractional powers of q appearing in their definition, such series have been studied extensively by Andrews, Gordon, and of course Rogers and Ramanujan (for example, see $[\mathrm{A}]$). Indeed, when $k=2$ we have that $c_{5}=-\frac{22}{5}$, and the two corresponding characters are essentially the products appearing in the celebrated Rogers-Ramanujan
identities

$$
\begin{aligned}
& \operatorname{ch}_{1,2}(q)=q^{\frac{11}{60}} \prod_{n \geq 0} \frac{1}{\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)} \\
& \operatorname{ch}_{2,2}(q)=q^{-\frac{1}{60}} \prod_{n \geq 0} \frac{1}{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)}
\end{aligned}
$$

In view of the discussion above, we investigate, for each k, the Wronskians for the complete sets of characters

$$
\left\{\operatorname{ch}_{1, k}(q), \operatorname{ch}_{2, k}(q), \ldots, \operatorname{ch}_{k, k}(q)\right\}
$$

For each $k \geq 2$, define $\mathcal{W}_{k}(q)$ and $\widetilde{\mathcal{W}}_{k}(q)$ by

$$
\begin{gather*}
\mathcal{W}_{k}(q):=\alpha(k) \cdot \operatorname{det}\left(\begin{array}{cccc}
\mathrm{ch}_{1, k} & \mathrm{ch}_{2, k} & \cdots & \mathrm{ch}_{k, k} \\
\mathrm{ch}_{1, k}^{\prime} & \mathrm{ch}_{2, k}^{\prime} & \cdots & \mathrm{ch}_{k, k}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
\operatorname{ch}_{1, k}^{(k-1)} & \operatorname{ch}_{2, k}^{(k-1)} & \cdots & \operatorname{ch}_{k, k}^{(k-1)}
\end{array}\right), \tag{1.4}\\
\widetilde{\mathcal{W}}_{k}(q):=\beta(k) \cdot \operatorname{det}\left(\begin{array}{cccc}
\operatorname{ch}_{1, k}^{\prime} & \mathrm{ch}_{2, k}^{\prime} & \cdots & \operatorname{ch}_{k, k}^{\prime} \\
\operatorname{ch}_{1, k}^{(2)} & \mathrm{ch}_{2, k}^{(2)} & \cdots & \operatorname{ch}_{k, k}^{(2)} \\
\vdots & \vdots & \vdots & \vdots \\
\operatorname{ch}_{1, k}^{(k)} & \mathrm{ch}_{2, k}^{(k)} & \cdots & \operatorname{ch}_{k, k}^{(k)}
\end{array}\right) \tag{1.5}
\end{gather*}
$$

Here $\alpha(k)$ (resp. $\beta(k))$ is chosen so that the q-expansion of $\mathcal{W}_{k}(q)$ (resp. $\left.\widetilde{\mathcal{W}}_{k}(q)\right)$ has first non-zero coefficient of 1 , and differentiation is given by

$$
\left(\sum a(n) q^{n}\right)^{\prime}:=\sum n a(n) q^{n}
$$

which equals $\frac{1}{2 \pi i} \cdot \frac{d}{d z}$ when $q:=e^{2 \pi i z}$.
It turns out that $\mathcal{W}_{k}(q)$ is easily described in terms of Dedekind's eta-function (see also Theorem 6.1 of [M2]), which is defined for $z \in \mathbb{H}, \mathbb{H}$ denoting the usual upper half-plane of \mathbb{C}, by

$$
\eta(z):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

Theorem 1.1. If $k \geq 2$, then

$$
\mathcal{W}_{k}(q)=\eta(z)^{2 k(k-1)} .
$$

Instead of directly computing $\widetilde{\mathcal{W}}_{k}(q)$, we investigate the quotient

$$
\begin{equation*}
\mathcal{F}_{k}(z):=\frac{\widetilde{\mathcal{W}}_{k}(q)}{\mathcal{W}_{k}(q)} \tag{1.6}
\end{equation*}
$$

It turns out that these q-series $\mathcal{F}_{k}(z)$ are modular forms of weight $2 k$ for the full modular group $\mathrm{SL}_{2}(\mathbb{Z})$. To make this more precise, suppose that $E_{4}(z)$ and $E_{6}(z)$ are the standard Eisenstein series

$$
\begin{equation*}
E_{4}(z)=1+240 \sum_{n=1}^{\infty} \sum_{d \mid n} d^{3} q^{n} \quad \text { and } \quad E_{6}(z)=1-504 \sum_{n=1}^{\infty} \sum_{d \mid n} d^{5} q^{n} \tag{1.7}
\end{equation*}
$$

and that $\Delta(z)$ and $j(z)$ (as before) are the usual modular forms

$$
\begin{equation*}
\Delta(z)=\frac{E_{4}(z)^{3}-E_{6}(z)^{2}}{1728} \quad \text { and } \quad j(z)=\frac{E_{4}(z)^{3}}{\Delta(z)} \tag{1.8}
\end{equation*}
$$

Theorem 1.2. If $k \geq 2$, then $\mathcal{F}_{k}(z)$ is a weight $2 k$ holomorphic modular form on $\mathrm{SL}_{2}(\mathbb{Z})$.
Example. For $2 \leq k \leq 6$, it turns out that

$$
\begin{aligned}
& \mathcal{F}_{2}(z)=E_{4}(z), \quad \mathcal{F}_{3}(z)=E_{6}(z) \\
& \mathcal{F}_{4}(z)=E_{4}(z)^{2}, \quad \mathcal{F}_{5}(z)=E_{4}(z) E_{6}(z) \\
& \mathcal{F}_{6}(z)=\frac{193504 E_{6}(z)^{2}+169971 E_{4}(z)^{3}}{363475}
\end{aligned}
$$

Some of these modular forms are identically zero. For example, we have that $\mathcal{F}_{13}(z)=0$, a consequence of the q-series identity

$$
\begin{equation*}
\operatorname{ch}_{12,13}(q)-\operatorname{ch}_{6,13}(q)-\operatorname{ch}_{3,13}(q)=1 \tag{1.9}
\end{equation*}
$$

which will be proved later. The following result completely determines those k for which $\mathcal{F}_{k}(z)=0$.

Theorem 1.3. The modular form $\mathcal{F}_{k}(z)$ is identically zero precisely for those k of the form $k=6 t^{2}-6 t+1$ with $t \geq 2$.

Since the Andrews-Gordon series are the partition generating functions

$$
\sum_{n=0}^{\infty} P_{b}(a ; n) q^{n}=\prod_{1 \leq n \neq 0, \pm a} \frac{1}{1-q^{n}}
$$

q-series identity (1.9) implies, for positive n, the shifted partition identity

$$
P_{27}(12 ; n)=P_{27}(6 ; n-1)+P_{27}(3 ; n-2) .
$$

This partition identity is a special case of the following theorem which is a corollary to the proof of Theorem 1.3.

Theorem 1.4. If $t \geq 2$, then for every positive integer n we have

$$
P_{b(t)}\left(a^{-}(t, 0) ; n\right)=\sum_{r=1}^{t-1}(-1)^{r+1}\left(P_{b(t)}\left(a^{+}(t, r) ; n-\omega^{-}(r)\right)+P_{b(t)}\left(a^{-}(t, r) ; n-\omega^{+}(r)\right)\right)
$$

where

$$
\begin{aligned}
a^{-}(t, r) & :=(2 t-1)(3 t-3 r-2), \\
a^{+}(t, r) & :=(2 t-1)(3 t-3 r-1), \\
b(t) & :=3(2 t-1)^{2}, \\
\omega^{-}(r) & :=\frac{3 r^{2}-r}{2}, \\
\omega^{+}(r) & :=\frac{3 r^{2}+r}{2} .
\end{aligned}
$$

The forms $\mathcal{F}_{k}(z)$ also provide deeper number theoretic information. Some of them parameterize isomorphism classes of supersingular elliptic curves in characteristic p. To make this precise, suppose that K is a field with characteristic $p>0$, and let \bar{K} be its algebraic closure. An elliptic curve E over K is supersingular if the group $E(\bar{K})$ has no p-torsion. This connection is phrased in terms of "divisor polynomials" of modular forms.

We now describe these polynomials. If $k \geq 4$ is even, then define $\tilde{E}_{k}(z)$ by

$$
\tilde{E}_{k}(x):= \begin{cases}1 & \text { if } k \equiv 0 \quad(\bmod 12), \tag{1.10}\\ E_{4}(z)^{2} E_{6}(z) & \text { if } k \equiv 2 \quad(\bmod 12), \\ E_{4}(z) & \text { if } k \equiv 4 \quad(\bmod 12), \\ E_{6}(z) & \text { if } k \equiv 6 \quad(\bmod 12), \\ E_{4}(z)^{2} & \text { if } k \equiv 8 \quad(\bmod 12), \\ E_{4}(z) E_{6}(z) & \text { if } k \equiv 10 \quad(\bmod 12)\end{cases}
$$

(see Section 2.6 of $[\mathrm{O}]$ for further details on divisor polynomials). As usual, let M_{k} denote the space of holomorphic weight k modular forms on $\mathrm{SL}_{2}(\mathbb{Z})$. If we write k as

$$
\begin{equation*}
k=12 m+s \text { with } s \in\{0,4,6,8,10,14\} \tag{1.11}
\end{equation*}
$$

then $\operatorname{dim}_{\mathbb{C}}\left(M_{k}\right)=m+1$, and every modular form $f(z) \in M_{k}$ factorizes as

$$
\begin{equation*}
f(z)=\Delta(z)^{m} \tilde{E}_{k}(z) \tilde{F}(f, j(z)) \tag{1.12}
\end{equation*}
$$

where \tilde{F} is a polynomial of degree $\leq m$ in $j(z)$. Now define the polynomial $h_{k}(x)$ by

$$
h_{k}(x):= \begin{cases}1 & \text { if } k \equiv 0 \quad(\bmod 12), \tag{1.13}\\ x^{2}(x-1728) & \text { if } k \equiv 2 \quad(\bmod 12), \\ x & \text { if } k \equiv 4 \quad(\bmod 12), \\ x-1728 & \text { if } k \equiv 6 \quad(\bmod 12), \\ x^{2} & \text { if } k \equiv 8 \quad(\bmod 12), \\ x(x-1728) & \text { if } k \equiv 10 \quad(\bmod 12)\end{cases}
$$

If $f(z) \in M_{k}$, then define the divisor polynomial $F(f, x)$ by

$$
\begin{equation*}
F(f, x):=h_{k}(x) \tilde{F}(f, x) \tag{1.14}
\end{equation*}
$$

If $j(E)$ denotes the usual j-invariant of an elliptic curve E, then the characteristic p locus of supersingular j-invariants is the polynomial in $\mathbb{F}_{p}[x]$ defined by

$$
\begin{equation*}
S_{p}(x):=\prod_{E / \mathbb{F}_{p} \text { supersingular }}(x-j(E)) \tag{1.15}
\end{equation*}
$$

the product being over isomorphism classes of supersingular elliptic curves. The following congruence modulo 37 , when $k=18$, is a special case of our general result

$$
\begin{aligned}
F\left(\mathcal{F}_{18}, j(z)\right) & =j(z)^{3}-\frac{2^{13} \cdot 3^{4} \cdot 89 \cdot 1915051410991641479}{17 \cdot 43 \cdot 83 \cdot 103 \cdot 113 \cdot 163 \cdot 523 \cdot 643 \cdot 919 \cdot 1423} \cdot j(z)^{2}+\cdots \\
& \equiv(j(z)+29)\left(j(z)^{2}+31 j(z)+31\right) \quad(\bmod 37) \\
& =S_{37}(j(z))
\end{aligned}
$$

The following result provides a general class of k for which $F\left(\mathcal{F}_{k}, j(z)\right)(\bmod p)$ is the supersingular locus $S_{p}(j(z))$.
Theorem 1.5. If $p \geq 5$ is prime and $k=\frac{p-1}{2}$, then

$$
F\left(\mathcal{F}_{k}, j(z)\right) \equiv S_{p}(j(z)) \quad(\bmod p)
$$

In Section 2 we prove Theorem 1.2. In Section 3 we provide the preliminaries required for the proofs of Theorems 1.3 and 1.5. These theorems, along with Theorem 1.4, are then proved in Sections 4 and 5 respectively. In Section 6 we give a conjecture concerning the zeros of $\widetilde{F}\left(\mathcal{F}_{k}, x\right)$.

2. Differential operators and the proof of Theorem 1.2

Here we study the quotient

$$
\begin{equation*}
\mathcal{F}_{k}(q):=\frac{\widetilde{\mathcal{W}}_{k}(q)}{\mathcal{W}_{k}(q)} \tag{2.1}
\end{equation*}
$$

and prove Theorem 1.2. Needless to say, the previous expression can be defined for an arbitrary set $\left\{f_{1}(q), \ldots, f_{k}(q)\right\}$ of holomorphic functions in \mathbb{H}, where each $f_{i}(q)$ has a $q-$ expansion. In the $k=1$ case, (2.1) is just the logarithmic derivative of f_{1}. We also introduce generalized Wronskian determinants. For $0 \leq i_{1}<i_{2}<\cdots<i_{k}$, let

$$
W^{i_{1}, \ldots, i_{k}}\left(f_{1}, \ldots, f_{k}\right)(q)=\operatorname{det}\left(\begin{array}{ccccc}
f_{1}^{\left(i_{1}\right)} & f_{2}^{\left(i_{1}\right)} & . & \cdot & f_{k}^{\left(i_{1}\right)} \tag{2.2}\\
f_{1}^{\left(i_{2}\right)} & f_{2}^{\left(i_{2}\right)} & \cdot & \cdot & f_{k}^{\left(i_{2}\right)} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
f_{1}^{\left(i_{k}\right)} & f_{2}^{\left(i_{k}\right)} & \cdot & \cdot & f_{k}^{\left(i_{k}\right)}
\end{array}\right)
$$

Clearly, $W^{0,1, \ldots, k-1}\left(f_{1}, \ldots, f_{k}\right)$ is the ordinary Wronskian. We will write $\mathcal{W}^{i_{1}, \ldots, i_{k}}\left(f_{1}, \ldots, f_{k}\right)$ for the normalization of $W^{i_{1}, \ldots, i_{k}}\left(f_{1}, \ldots, f_{k}\right) \neq 0$, where the leading coefficient in the q expansion is one.

Before we prove Theorem 1.2, we recall the definition of the "quasi-modular" form

$$
\begin{equation*}
E_{2}(z)=1-24 \sum_{n=1}^{\infty} \sum_{d \mid n} d q^{n} \tag{2.3}
\end{equation*}
$$

which plays an important role in the proof of the following result (also see [M1]).
Theorem 2.1. For $k \geq 2$, the set $\left\{\operatorname{ch}_{1, k}(q), \ldots, \operatorname{ch}_{k, k}(q)\right\}$ is a fundamental system of a k-th order linear differential equation of the form

$$
\begin{equation*}
\left(q \frac{d}{d q}\right)^{k} y+\sum_{i=0}^{k-1} P_{i}(q)\left(q \frac{d}{d q}\right)^{i} y=0 \tag{2.4}
\end{equation*}
$$

where $P_{i}(q) \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$. Moreover, $P_{0}(q)$ is a modular form for $\mathrm{SL}_{2}(\mathbb{Z})$.
Proof. The first part was already proven in [M2], Theorem 6.1. Let

$$
\begin{equation*}
\Theta_{k}:=\left(q \frac{d}{d q}\right)-\frac{k}{12} E_{2}(z) \tag{2.5}
\end{equation*}
$$

It is well known that Θ_{k} sends a modular form of weight k to a modular form of weight $k+2$ [Z]. Then Theorem 5.3 in [M1] implies that the equation (2.4) can be rewritten as

$$
\Theta^{k} y+\sum_{i=1}^{k-1} Q_{i}(q) \Theta^{i} y+Q_{0}(q) y=0
$$

where for $i \geq 1$

$$
\Theta^{i}:=\Theta_{2 i-2} \circ \cdots \circ \Theta_{2} \circ \Theta_{0}
$$

and

$$
Q_{i}(q) \in \mathbb{Q}\left[E_{4}, E_{6}\right] .
$$

We note that $Q_{0}(q)$ is the "modular part" $P_{0}(q)$, but that $P_{0}(q)$ itself is modular. Thus $P_{0}(q)=Q_{0}(q)$, and the proof follows.
Proof of Theorem 1.2. Let $\left\{f_{1}(q), \ldots, f_{k}(q)\right\}$ be a linearly independent set of holomorphic functions in the upper half-plane. Then there is a unique k-th order linear differential operator with meromorphic coefficients

$$
P=\left(q \frac{d}{d q}\right)^{k}+\sum_{i=0}^{k-1} P_{i}(q)\left(q \frac{d}{d q}\right)^{i}
$$

such that $\left\{f_{1}(q), \ldots, f_{k}(q)\right\}$ is a fundamental system of

$$
P(y)=0
$$

Explicitly,

$$
\begin{equation*}
P(y)=(-1)^{k} \frac{W^{0,1, \ldots, k}\left(y, f_{1}, \ldots, f_{k}\right)}{W^{0,1, \ldots, k-1}\left(f_{1}, \ldots, f_{k}\right)} \tag{2.6}
\end{equation*}
$$

In particular,

$$
P_{0}(q)=(-1)^{k} \frac{W^{1,2, \ldots, k}\left(f_{1}, \ldots, f_{k}\right)}{W^{0,1, \ldots, k-1}\left(f_{1}, \ldots, f_{k}\right)}
$$

Thus,

$$
P_{0}(q)=\lambda_{k} \frac{\widetilde{\mathcal{W}}_{k}(q)}{\mathcal{W}_{k}(q)}
$$

for some nonzero constant λ_{k}. Now, we specialize $f_{i}(q)=\operatorname{ch}_{i, k}(q)$ and apply Theorem 2.1.

Remark. The techniques from [M1] can be used to give explicit formulas for $\frac{\widetilde{\mathcal{W}}_{k}(q)}{\mathcal{W}_{k}(q)}$ in terms of Eisenstein series. However, this computation becomes very tedious for large k.

3. Preliminaries for Proofs of Theorems 1.3 and 1.5

In this section we recall essential preliminaries regarding q-series and divisor polynomials of modular forms.
3.1. Classical q-series identities. We begin by recalling Jacobi's triple product identity and Euler's pentagonal number theorem.

Theorem 3.1. (Jacobi's Triple Product Identity) For $y \neq 0$ and $|q|<1$, we have

$$
\sum_{m=-\infty}^{\infty} y^{m} q^{m^{2}}=\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)\left(1+y q^{2 n-1}\right)\left(1+y^{-1} q^{2 n-1}\right)
$$

Theorem 3.2. (Euler's Pentagonal Number Theorem) The following q-series identity is true:

$$
\sum_{m=-\infty}^{\infty}(-1)^{m} q^{\frac{1}{2} m(3 m-1)}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

3.2. Divisor polynomials and Deligne's theorem. If $p \geq 5$ is prime, then the supersingular loci $S_{p}(x)$ and $\widetilde{S}_{p}(x)$ are defined in $\mathbb{F}_{p}[x]$ by the following products over isomorphism classes of supersingular elliptic curves:

$$
\begin{align*}
& S_{p}(x):=\prod_{E / \mathbb{F}_{p} \text { supersingular }}(x-j(E)), \\
& \widetilde{S}_{p}(x):=\prod_{\substack{E / \widetilde{\mathbb{F}}_{p} \text { supersingular } \\
j(E) \notin\{0,1728\}}}(x-j(E)) . \tag{3.1}
\end{align*}
$$

For such primes p, let \mathfrak{S}_{p} denote the set of those supersingular j-invariants in characteristic p which are in $\mathbb{F}_{p}-\{0,1728\}$, and let \mathfrak{M}_{p} denote the set of monic irreducible quadratic
polynomials in $\mathbb{F}_{p}[x]$ whose roots are supersingular j-invariants. The polynomial $S_{p}(x)$ splits completely in $\mathbb{F}_{p^{2}}$ ([Si]). Define $\epsilon_{\omega}(p)$ and $\epsilon_{i}(p)$ by

$$
\begin{aligned}
& \epsilon_{\omega}(p):=\left\{\begin{array}{lll}
0 & \text { if } p \equiv 1 & (\bmod 3), \\
1 & \text { if } p \equiv 2 & (\bmod 3),
\end{array}\right. \\
& \epsilon_{i}(p):=\left\{\begin{array}{lll}
0 & \text { if } p \equiv 1 & (\bmod 4), \\
1 & \text { if } p \equiv 3 & (\bmod 4),
\end{array}\right.
\end{aligned}
$$

The following proposition relates $S_{p}(x)$ to $\tilde{S}_{p}(x)$ ([Si]).
Proposition 3.3. If $p \geq 5$ is prime, then

$$
\begin{aligned}
S_{p}(x) & =x^{\epsilon_{\omega}(p)}(x-1728)^{\epsilon_{i}(p)} \cdot \prod_{\alpha \in \mathfrak{S}_{p}}(x-\alpha) \cdot \prod_{g \in \mathfrak{M}_{p}} g(x) \\
& =x^{\epsilon_{\omega}(p)}(x-1728)^{\epsilon_{i}(p)} \tilde{S}_{p}(x) .
\end{aligned}
$$

Deligne found the following explicit description of these polynomials (see [Dw], [Se]).
Theorem 3.4. If $p \geq 5$ is prime, then

$$
F\left(E_{p-1}, x\right) \equiv S_{p}(x) \quad(\bmod p)
$$

Remark. In a beautiful paper [KZ], Kaneko and Zagier provide a simple proof of Theorem 3.4.
Remark. The Von-Staudt congruences imply for primes p, that $\frac{2(p-1)}{B_{p-1}} \equiv 0(\bmod p)$, where B_{n} denotes the usual nth Bernoulli number. It follows that if

$$
E_{k}(z)=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sum_{d \mid n} d^{k-1} q^{n}
$$

is the usual weight k Eisenstein series, then

$$
E_{p-1}(z) \equiv 1 \quad(\bmod p)
$$

If $p \geq 5$ is prime, then Theorem 3.4 combined with the definition of divisor polynomials, implies that if $f(z) \in M_{p-1}$ and $f(z) \equiv 1(\bmod p)$, then

$$
F(f, j(z)) \equiv S_{p}(j(z)) \quad(\bmod p)
$$

4. The Vanishing of $\mathcal{F}_{k}(z)$

Here we prove Theorem 1.3 and Theorem 1.4. To prove these results, we first require some notation and two technical lemmas. For simplicity, we will write $\operatorname{ch}_{i}(q)$ for $\mathrm{ch}_{i, k}(q)$ when k is understood.

We define

$$
\begin{equation*}
\Theta(y, q):=\sum_{n=-\infty}^{\infty} y^{n} q^{n^{2}} \tag{4.1}
\end{equation*}
$$

and we consider the sum

$$
\begin{equation*}
A_{t}(q):=\Theta\left(-q^{\frac{1}{2}(2 t-1)}, q^{\frac{3}{2}(2 t-1)^{2}}\right)+\sum_{r=1}^{t-1}(-1)^{r} \Psi_{r, t}^{-}(q)+\sum_{r=1}^{t-1}(-1)^{r} \Psi_{r, t}^{+}(q) \tag{4.2}
\end{equation*}
$$

where

$$
\Psi_{r, t}^{-}(q):=q^{\frac{1}{2} r(3 r-1)} \Theta\left(-q^{\frac{1}{2}(6 r-1)(2 t-1)}, q^{\frac{3}{2}(2 t-1)^{2}}\right)
$$

and

$$
\Psi_{r, t}^{+}(q):=q^{\frac{1}{2} r(3 r+1)} \Theta\left(-q^{\frac{1}{2}(6 r+1)(2 t-1)}, q^{\frac{3}{2}(2 t-1)^{2}}\right)
$$

Lemma 4.1. If $t \geq 2$ and $k=6 t^{2}-6 t+1$, then we have the following q-series identity

$$
\begin{aligned}
\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-1} \cdot A_{t}(q)= & \operatorname{ch}_{((2 t-1)(3 t-2))}(q) \\
& +\sum_{r=1}^{t-1}(-1)^{r} \operatorname{ch}_{((2 t-1)(3 t-3 r-1))}(q)+\sum_{r=1}^{t-1}(-1)^{r} \operatorname{ch}_{((2 t-1)(3 t-3 r-2))}(q)
\end{aligned}
$$

Proof. We examine the summands in $A_{t}(q)$. Using Theorem 3.1, the first term is

$$
\begin{aligned}
& \Theta\left(-q^{\frac{1}{2}(2 t-1)}, q^{\frac{3}{2}(2 t-1)^{2}}\right) \\
& =\prod_{n=1}^{\infty}\left(1-q^{3(2 t-1)^{2} n}\right)\left(1-q^{\frac{1}{2}(2 t-1)+\frac{3}{2}(2 t-1)^{2}(2 n-1)}\right)\left(1-q^{-\frac{1}{2}(2 t-1)+\frac{3}{2}(2 t-1)^{2}(2 n-1)}\right) \\
& =\prod_{n=1}^{\infty}\left(1-q^{3(2 t-1)^{2} n}\right)\left(1-q^{-\left(\frac{3}{2}(2 t-1)^{2}-\frac{1}{2}(2 t-1)\right)+3(2 t-1)^{2} n}\right)\left(1-q^{\frac{3}{2}(2 t-1)^{2}-\frac{1}{2}(2 t-1)+3(2 t-1)^{2}(n-1)}\right)
\end{aligned}
$$

Noting that $\frac{1}{2}\left(3(2 t-1)^{2}-(2 t-1)\right)=(2 t-1)(3 t-2)$, we have that

$$
\Theta\left(-q^{\frac{1}{2}(2 t-1)}, q^{\frac{3}{2}(2 t-1)^{2}}\right)=\prod_{n=1}^{\infty}\left(1-q^{n}\right) \cdot \operatorname{ch}_{((2 t-1)(3 t-2))}(q)
$$

Arguing with Theorem 3.1 again, we find that

$$
\Psi_{r, t}^{-}(q)=\prod_{n=1}^{\infty}\left(1-q^{n}\right) \cdot \operatorname{ch}_{((2 t-1)(3 t-3 r-1))}(q)
$$

and

$$
\Psi_{r, t}^{+}(q)=\prod_{n=1}^{\infty}\left(1-q^{n}\right) \cdot \operatorname{ch}_{((2 t-1)(3 t-3 r-2))}(q)
$$

The lemma follows easily.
Lemma 4.2. If $t \geq 2$, then we have the following q-series identity

$$
A_{t}(q)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

Proof. It suffices to show that $A_{t}(q)$ is the q-series in Euler's Pentagonal Number Theorem. Write $A_{t}(q)$ in a more recognizable form beginning with the first term in $A_{t}(q)$

$$
\begin{aligned}
\Theta\left(-q^{\frac{1}{2}(2 t-1)}, q^{\frac{3}{2}(2 t-1)^{2}}\right) & =\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{1}{2}(2 t-1) n+\frac{3}{2}(2 t-1)^{2} n^{2}} \\
& =\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{1}{2}(2 t-1) n(3(2 t-1) n-1)}
\end{aligned}
$$

where we have replaced n by $-n$ in the final sum.
For $\Psi_{r, t}^{-}(q)$ and $\Psi_{r, t}^{+}(q)$ we have

$$
\begin{aligned}
(-1)^{r} \Psi_{r, t}^{-}(q) & =\sum_{n=-\infty}^{\infty}(-1)^{n+r} q^{\frac{1}{2} r(3 r-1)+\frac{1}{2}(6 r-1)(2 t-1) n+\frac{3}{2}(2 t-1)^{2} n^{2}} \\
& =\sum_{n=-\infty}^{\infty}(-1)^{(2 t-1) n+r} q^{\frac{1}{2}((2 t-1) n+r)(3((2 t-1) n+r)-1)}
\end{aligned}
$$

and we have

$$
\begin{aligned}
(-1)^{r} \Psi_{r, t}^{+}(q) & =\sum_{n=-\infty}^{\infty}(-1)^{n+r} q^{\frac{1}{2} r(3 r+1)+\frac{1}{2}(6 r+1)(2 t-1) n+\frac{3}{2}(2 t-1)^{2} n^{2}} \\
& =\sum_{n=-\infty}^{\infty}(-1)^{n+r} q^{\frac{1}{2}((2 t-1) n+r)(3((2 t-1) n+r)+1)} \\
& =\sum_{n=-\infty}^{\infty}(-1)^{(2 t-1) n+(2 t-1)-r} q^{\frac{1}{2}((2 t-1) n+(2 t-1)-r)(3((2 t-1) n+(2 t-1)-r)-1)},
\end{aligned}
$$

where in the last line we substituted $-n$ for n and then $n+1$ for n. By combining these series, the claim follows easily from Theorem 3.2.

Proof of Theorem 1.3. We first show that if $k=6 t^{2}-6 t+1$, then $\widetilde{\mathcal{W}}_{k}(q)$ vanishes. Recalling that $2 k+1=3(2 t-1)^{2}$ and using the above lemmas, we obtain

$$
\operatorname{ch}_{((2 t-1)(3 t-2))}(q)+\sum_{r=1}^{t-1}(-1)^{r} \operatorname{ch}_{((2 t-1)(3 t-3 r-1))}(q)+\sum_{r=1}^{t-1}(-1)^{r} \operatorname{ch}_{((2 t-1)(3 t-3 r-2))}(q)=1
$$

This gives us a linear relationship among the columns, and the Wronskian is then identically zero.

Define, for $1 \leq i \leq k$, the rational number

$$
a(i, k):=h_{i, k}-\frac{c_{k}}{24} .
$$

If $k \neq 6 t^{2}-6 t+1$, it is straightforward to show that $a(i, k) \neq 0$. Noting that

$$
\operatorname{ch}_{i, k}(q)=q^{a(i, k)}+\ldots
$$

and making a few simple observations such as $a(i, k)>a(i+1, k)$ and $a(k, k)>-1$, it follows that $\widetilde{\mathcal{W}}_{k}(q)$ cannot vanish. Specifically, if the Wronskian vanished, then we would have a linear dependence of the characters. However, because $a(i, k) \neq 0$ and $a(i, k)>-1$, this is not possible.

Proof of Theorem 1.4. For $t \geq 2$ and $k=6 t^{2}-6 t+1$, the proof of Theorem 1.3 gives the following identity

$$
\begin{aligned}
\prod_{n \neq 0, \pm(2 t-1)(3 t-2)}^{\infty} & \frac{1}{1-q^{n}}+\sum_{r=1}^{t-1}(-1)^{r} q^{\frac{1}{2} r(3 r-1)} \cdot \\
& +\sum_{n \neq 0, \pm(2 t-1)(3 t-3 r-1)}^{\infty}(-1)^{r} q^{\frac{1}{2} r(3 r+1)} \cdot \prod_{n \neq 1 \bmod 2 k+ \pm(2 t-1)(3 t-3 r-2)}^{\infty} \frac{1}{1-q^{n}} \\
& \prod_{(\bmod 2 k+1)}^{\infty} \frac{1}{1-q^{n}}=1
\end{aligned}
$$

The proof now follows by inspection.

5. Supersingular Polynomial Congruences

Here we prove Theorem 1.5: the congruence

$$
F\left(\mathcal{F}_{k}, j(z)\right) \equiv S_{p}(j(z)) \quad(\bmod p),
$$

which holds for primes $5 \leq p=(2 k+1)$, where $k \neq 6 t^{2}-6 t+1$ with $t \geq 2$.
We begin with a technical lemma.
Lemma 5.1. For k with $2 k+1=p$, p a prime, then $\mathcal{F}_{k}(z)$ has p-integral coefficients, and satisfies the congruence

$$
\mathcal{F}_{k}(z) \equiv 1 \quad(\bmod p) .
$$

Proof. If we expand $\widetilde{\mathcal{W}}_{k}(q)$ by minors along its bottom row, and if we expand $\mathcal{W}_{k}(q)$ by minors along its top row, we have that the quotient of the Wronskians is the normalization of

$$
\frac{\sum_{i=1}^{k} \operatorname{ch}_{i, k}^{(k)}(q) \operatorname{det}\left(N_{i}\right)}{\sum_{i=1}^{k} \operatorname{ch}_{i, k}(q) \operatorname{det}\left(N_{i}\right)}
$$

where the N_{i} 's are the respective minors. We fix an i and consider the term

$$
\operatorname{ch}_{i, k}^{(k)}(q)=\sum_{n=0}^{\infty}(n+a(i, k))^{k} b_{i, k}(n) q^{n+a(i, k)},
$$

where

$$
\operatorname{ch}_{i, k}(q)=\sum_{n=0}^{\infty} b_{i, k}(n) q^{n+a(i, k)} .
$$

We note that

$$
a(i, k)=\frac{(2 k+1)(3 k+1-6 i)+6 i^{2}}{12(2 k+1)} .
$$

Multiplying the numerator by $(12(2 k+1))^{k}$ to clear out the denominators in the $a(i, k)$'s, the quotient of the Wronskians is then just the normalization of

$$
\frac{\sum_{i=1}^{k} \sum_{n=0}^{\infty}\left(12(2 k+1) n+(2 k+1)(3 k+1-6 i)+6 i^{2}\right)^{k} b_{i, k}(n) q^{n+a(i, k)} \operatorname{det}\left(N_{i}\right)}{\sum_{i=1}^{k} \operatorname{ch}_{i, k}(q) \operatorname{det}\left(N_{i}\right)}
$$

However if we compute this modulo p, and note that $k=\frac{p-1}{2}$, we have

$$
\left(12(2 k+1) n+(2 k+1)(3 k+1-6 i)+6 i^{2}\right)^{k} \equiv\left(\frac{6}{p}\right) \quad(\bmod p)
$$

The p-integrality follows from Theorem 1.1, and it then follows that modulo p, the quotient is just 1 .

Proof of Theorem 1.3. Here we simply combine Theorem 1.2, Lemma 5.1 and the second remark at the end of Section 3.

Remark. There are cases for which

$$
\mathcal{F}_{k}(z) \equiv 1 \quad(\bmod p)
$$

with $2 k+1 \neq p$. It would be interesting to completely determine all the conditions for which such a congruence holds. By the theory of modular forms 'mod p ', it follows that such k must have the property that $2 k=a(p-1)$ for some positive integer a. A resolution of this problem requires determining conditions for which $\mathcal{F}_{k}(z)$ has p-integral coefficients, and also the extra conditions guaranteeing the above congruence.

Remark. The methods of this paper can be used to reveal many more congruences relating supersingular j-invariants to the divisor polynomials $F\left(\mathcal{F}_{k}, j\right)(\bmod p)$. For example, if

$$
(k, p) \in\{(10,17),(16,29),(17,31),(22,41),(23,43),(28,53)\}
$$

we have that

$$
F\left(\mathcal{F}_{k}, j(z)\right) \equiv j(z) \cdot S_{p}(j(z)) \quad(\bmod p)
$$

Such congruences follow from the multiplicative structure satisfied by divisor polynomials as described in Section 2.8 of [O].

6. A conjecture on the zeros of $F\left(\mathcal{F}_{k}, x\right)$

Our Theorem 1.5 shows that the divisor polynomial modulo p, for certain $\mathcal{F}_{k}(z)$, is the locus of supersingular j-invariants in characteristic p. We proved this theorem by showing that

$$
\mathcal{F}_{\frac{p-1}{2}}(z) \equiv E_{p-1}(z) \equiv 1 \quad(\bmod p),
$$

and we then obtained the desired conclusion by applying a famous result of Deligne. In view of such close relationships between certain $\mathcal{F}_{k}(z)$ and $E_{2 k}(z)$, it is natural to investigate other properties of $E_{2 k}(z)$ which may be shared by $\mathcal{F}_{k}(z)$. A classical result of Rankin and Swinnerton-Dyer proves that every $F\left(E_{2 k}, x\right)$ has simple roots, all of which are real and lie in the interval $[0,1728]$. Numerical evidence strongly supports the following conjecture.

Conjecture. If $k \geq 2$ is a positive integer for which $k \neq 6 t^{2}-6 t+1$ with $t \geq 2$, then $F\left(\mathcal{F}_{k}, x\right)$ has simple roots, all of which are real and are in the interval [0,1728].

References

[A] G. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[Bo] R. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), pages 3068-3071.
[Dw] B. Dwork, p-adic cycles, Inst. Hautes Études Scie. Publ. Math. 37 (1969), pages 27-115.
[FaKr] H. M. Farkas and I. Kra, Riemann surfaces, Springer-Verlag, New York, 1980.
[FF] B. Feigin and E. Frenkel, Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities, in: I.M. Gelfand Seminar, Adv. Soviet Math. 16 (1993), Part I, pages 139-148.
[FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Appl. Math., Vol 134, Academic Press, New York, 1988.
[KW] V. Kac and M. Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. USA 85 (1988), pages 4956-4960.
[KZ] M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series, and Atkin's othogonal ploynomials, Computational perspectives on number theory (Chicago, Il., 1995), AMS/IP 7 (1998), pages 97-126.
[M1] A. Milas, Ramanujan's "Lost Notebook" and the Virasoro algebra, Comm. Math. Phys. 251 (2004), pages 657-678.
[M2] A. Milas, Virasoro algebra, Dedekind eta-function and specialized Macdonald's identities, Transf. Groups 9 (2004), pages 273-288.
[O] K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference, 102, Amer. Math. Soc., Providence, R. I., 2004.
$[\mathrm{R}] \quad$ R.A. Rankin, The construction of automorphic forms from the derivatives of given forms, J. Indian Math. Soc. 20, (1956), pages 103-116.
[RC] A. Rocha-Caridi, Vacuum vector representations of the Virasoro algebra, in Vertex operators in mathematics and physics (Berkeley, 1983), Math. Sci. Res. Inst. Publ., 3, 1985, pages 451-473.
[Se] J.-P. Serre, Congruences et formes modulaires (d'apers H.P.F. Swinnerton-Dyer), Sem. Bourbaki 416 (1971-1972), pages 74-88.
[Si] J. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, 1986.
[Z] D. Zagier, Modular forms and differential operators, K. G. Ramanathan memorial issue, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), pages 57-75.
[Zh] Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), pages 237-307.

Department of Mathematics and Statistics, SUNY Albany, Albany, New York 12222
E-mail address: amilas@math.albany.edu
Department of Mathematics, Penn State University, University Park, Pennsylvania 16802

E-mail address: mort@math.psu.edu
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
E-mail address: ono@math.wisc.edu

[^0]: 2000 Mathematics Subject Classification. 11F30, 11G05, 17B68.
 The third author thanks the support of a Packard Fellowship, a Romnes Fellowship, a Guggenheim Fellowship, and grants from the National Science Foundation.

