ON DIFFERENTIATION AND HARMONIC NUMBERS

ERIC MORTENSON

Abstract

In a paper of Andrews and Uchimura [AU], it is shown how differentiation applied to hypergeometric identities produces formulas for harmonic and q-harmonic numbers. Here we recall two binomial coefficient sums that appear in [M], and reprove them using the techniques of [AU].

1. Introduction and Goal

It is known that many binomial coefficient formulas follow from hypergeometric series identities [A1]. However, as is demonstrated in [AU] there are binomial coefficient identities which are not necessarily of this type. Here we recall two binomial coefficient sums from $[\mathrm{M}]$ and reprove them using the methods of [AU].

We first recall identities from (6.21) and (5.28) in [M]:

$$
\begin{gather*}
\sum_{j=0}^{n}(-1)^{j}\binom{n+j}{j}\binom{n}{j}\left(H_{n+j}+H_{m+j}-2 H_{j}\right)=0, \tag{1.1}\\
\sum_{j=0}^{n}(-1)^{j}\binom{n+j}{j}\binom{n}{j}\left(1+j\left(H_{n+j}+H_{m+j}-2 H_{j}\right)\right) \tag{1.2}\\
=(-1)^{n}(1+n+m),
\end{gather*}
$$

where $H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n}$. For both identities we have the condition $n \geq m \geq 1$. In $[\mathrm{M}]$, these identities were crucial in proving several Beukers like supercongruences that had been observed numerically by Fernando Rodriguez-Villegas [FRV].

In $[\mathrm{M}]$, these identities were broken up into smaller pieces, and each part was evaluated using Wilf-Zeilberger [PWZ] theory. Although these were evaluated exactly, for the goal of $[M]$ one only needed to show that the two sums were congruent to zero modulo p, where $n+m=p-1$ and $p \geq 5$ was prime. Our objective here is two-fold: to show that this can be

[^0]accomplished from differentiation of classical hypergeometric identities and to bring attention to this useful technique found in [AU].

We recall some basic definitions,

$$
\begin{equation*}
\delta[f(x)]:=f^{\prime}(0) \text { and }\binom{x+n+j}{n}:=\frac{(x+j+1)_{n}}{(1)_{n}} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
(a)_{n}:=a(a+1) \cdots(a+n-1) \tag{1.4}
\end{equation*}
$$

Thus we can write

$$
\begin{equation*}
\delta\left[\binom{x+n+j}{n}\right]=\binom{n+j}{n}\left(H_{n+j}-H_{j}\right), \text { and }\binom{n}{j}=(-1)^{j} \frac{(-n)_{j}}{j!} \tag{1.5}
\end{equation*}
$$

We also recall the standard notation for hypergeometric series [A2],

$$
{ }_{2} F_{1}\left(\left.\begin{array}{ll}
a, & b \tag{1.6}\\
& c
\end{array} \right\rvert\, x\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{n!(c)_{n}} x^{n}
$$

as well as the Chu-Vandermonde sum [A2]:

$$
{ }_{2} F_{1}\left(\begin{array}{ll}
-n, & a \tag{1.7}\\
& c \mid 1
\end{array}\right)=\frac{(c-a)_{n}}{(c)_{n}}
$$

2. The First Identity

Here we break the second identity up into two parts. For the first part, we proceed as follows:

$$
\begin{aligned}
\sum_{j=0}^{n} & (-1)^{j}\binom{n+j}{j}\binom{n}{j}\left(H_{n+j}-H_{j}\right)=\sum_{j=0}^{n} \frac{(-n)_{j}}{j!}\binom{n+j}{j}\left(H_{n+j}-H_{j}\right) \\
& =\delta\left[\sum_{j=0}^{n} \frac{(-n)_{j}}{j!} \frac{(x+j+1)_{n}}{n!}\right]=\delta\left[\frac{(x+1)_{n}}{n!} \sum_{j=0}^{n} \frac{(-n)_{j}}{j!} \frac{(x+n+1)_{j}}{(x+1)_{j}}\right] \\
& =\delta\left[\frac{(x+1)_{n}}{n!} \cdot{ }_{2} F_{1}\left(\begin{array}{c}
-n, \\
x+n+1 \\
x+1
\end{array} \quad 1\right)\right] \\
& =\delta\left[\frac{(x+1)_{n}}{n!} \cdot \frac{(-n)_{n}}{(x+1)_{n}}\right]=\delta\left[(-1)^{n}\right]=0
\end{aligned}
$$

The second part is analogous, but we replace n with $p-m-1$, and then consider it $\bmod p$.

$$
\begin{aligned}
\sum_{j=0}^{n} & (-1)^{j}\binom{n+j}{j}\binom{n}{j}\left(H_{m+j}-H_{j}\right)=\sum_{j=0}^{n} \frac{(-n)_{j}}{j!} \frac{(n+1)_{j}}{j!}\left(H_{m+j}-H_{j}\right) \\
& =\sum_{j=0}^{n} \frac{(m-p+1)_{j}}{j!} \frac{(p-m)_{j}}{j!}\left(H_{m+j}-H_{j}\right) \\
& \equiv \sum_{j=0}^{m} \frac{(-m)_{j}}{j!} \frac{(m+1)_{j}}{j!}\left(H_{m+j}-H_{j}\right) \quad(\bmod p)=0
\end{aligned}
$$

Putting both parts together, it follows that the first identity is congruent to zero $\bmod p$.

3. The Second Identity

We break the first identity up into three sums, and analyze each separately. The first is well known, but we include it for the sake of completeness.

$$
\begin{aligned}
\sum_{j=0}^{n}(-1)^{j}\binom{n+j}{j}\binom{n}{j} & =\sum_{j=0}^{n} \frac{(n+1)!}{j!} \frac{(-n)_{j}}{j!} \\
& ={ }_{2} F_{1}\left(\left.\begin{array}{cc}
-n, & n+1 \\
1
\end{array} \right\rvert\, 1\right)=\frac{(-n)_{n}}{(1)_{n}}=(-1)^{n}
\end{aligned}
$$

For the second sum, we proceed as follows:

$$
\begin{aligned}
\sum_{j=0}^{n} & (-1)^{j}\binom{n+j}{j}\binom{n}{j}\left(j\left(H_{n+j}-H_{j}\right)\right) \\
& =\delta\left[\sum_{j=0}^{n} \frac{(-n)_{j}}{j!} \frac{(x+j+1)_{n}}{n!} \cdot j\right]=\delta\left[\frac{(x+1)_{n}}{n!} \sum_{j=1}^{n} \frac{(-n)_{j}}{(j-1)!} \frac{(x+n+1)_{j}}{(x+1)_{j}}\right] \\
& =\delta\left[\frac{(x+1)_{n}}{n!} \frac{(x+n+1)(-n)}{(x+1)} \sum_{j=1}^{n} \frac{(-n+1)_{(j-1)}}{(j-1)!} \frac{(x+n+2)_{(j-1)}}{(x+2)_{(j-1)}}\right] \\
& =\delta\left[\frac { (x + 1) _ { n } } { n ! } \frac { (x + n + 1) (- n) } { (x + 1) } { } _ { 2 } F _ { 1 } \left(\begin{array}{cc}
-n+1, & x+n+2 \mid 1)] \\
& =\delta\left[\frac{(x+1)_{n}}{n!} \frac{(x+n+1)(-n)}{(x+1)} \frac{(-n)_{n-1}}{(x+2)_{n-1}}\right] \\
& =\delta\left[\frac{(x+1)_{n}}{n!} \frac{(x+n+1)(-n)(-1)^{n-1} n!}{(x+1)_{n}}\right] \\
& =\delta\left[(x+n+1)(-n)(-1)^{n-1}\right]=(-1)^{n} \cdot n .
\end{array} .\right.\right.
\end{aligned}
$$

for the third and final sum, we recall that $n+m=p-1$ and argue as before

$$
\begin{aligned}
& \sum_{j=0}^{n}(-1)^{j}\binom{n+j}{j}\binom{n}{j}\left(j\left(H_{m+j}-H_{j}\right)\right) \\
& \quad \equiv \delta\left[\frac{(x+1)_{m}}{m!} \sum_{j=1}^{m} \frac{(-m)_{j}}{(j-1)!} \frac{(x+m+1)_{j}}{(x+1)_{j}}\right] \quad(\bmod p) \\
&=(-1)^{m} \cdot m=(-1)^{n} \cdot m
\end{aligned}
$$

The last equality follows because $n+m=p-1$ is even, thus n and m have the same parity. Therefore the sum is congruent $\bmod p$ to $(-1)^{n}(1+n+m)=(-1)^{n} p$, i.e. zero $\bmod p$.

4. Remark

The referee speculated as to the truth of the following general identity

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}\binom{x+j}{n} \prod_{k=1}^{m}(j-k+1)=\binom{n}{m}(x+1)_{m} \tag{4.1}
\end{equation*}
$$

which would shorten the proofs in the previous two sections. Indeed, replace x with $x+n$ and then let let $m=0,1$ in sections 2 and 3 respectively. Proving this identity is an opportunity to emphasize this note's underlying theme: write it as a hypergeometric series and then use Chu-Vandermonde to transform it. Replacing x with $x+n$ for convenience, we have

$$
\begin{aligned}
& \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\binom{x+n+j}{n} \prod_{k=1}^{m}(j-k+1) \\
& =\sum_{j=m}^{n} \frac{(-n)_{j}}{(j-m)!} \frac{(x+j+1)_{n}}{n!}=\frac{(x+1)_{n}}{n!} \sum_{j=m}^{n} \frac{(-n)_{j}}{(j-m)!} \frac{(x+n+1)_{j}}{(x+1)_{j}} \\
& =\frac{(x+1)_{n}}{n!} \frac{(x+n+1)_{m}(-n)_{m}}{(x+1)_{m}} \sum_{j=m}^{n} \frac{(-n+m)_{(j-m)}}{(j-m)!} \frac{(x+n+m+1)_{(j-m)}}{(x+m+1)_{(j-m)}} \\
& =\frac{(x+1)_{n}}{n!} \frac{(x+n+1)_{m}(-n)_{m}}{(x+1)_{m}} F_{1}\binom{-n+m, \quad x+n+m+1 \mid 1)}{x+m+1} \\
& =\frac{(x+1)_{n}}{n!} \frac{(x+n+1)_{m}(-n)_{m}}{(x+1)_{m}} \frac{(-n)_{n-m}}{(x+m+1)_{n-m}} \\
& =\frac{(x+n+1)_{m}}{n!} \frac{(-1)^{m} n!}{(n-m)!} \frac{(-1)^{n-m} n!}{m!} \\
& =(-1)^{n}\binom{n}{m}(x+n+1)_{m} .
\end{aligned}
$$

5. Acknowledgements

The author would like to thank the referee for the helpful comments and suggestions which improved this paper.

References

[A1] G. Andrews, Applications of Hypergeometric Functions, S.I.A.M. Review, 16 (1974), pages 441-484.
[A2] G. Andrews, The Theory of Partitions, Vol. 2, Encycl. of Math. and Its Appl., Addison-Wesley, Reading, 1976. (reprinted: Cambridge University Press, 1998).
[AU] G. Andrews, K. Uchimura, Identities in Combinatorics IV: Differention and Harmonic Numbers, Utilitas Mathematica 28 (1985), pages 265-269.
[FRV] F. Rodriguez-Villegas, Hypergeometric Families of Calabi-Yau Manifolds. Calabi-Yau varieties and mirror symmerty, Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003.
[M] E. Mortenson, Supercongruences Between Truncated ${ }_{2} F_{1}$ Hypergeometric Functions and their Gaussian Analogs, Trans. Amer. Math. Soc., 335 (2003), pages 139-147
[PWZ] M. Petkovsek, H. Wilf, D. Zeilberger, $A=B$, A. K. Peters, Ltd., Wellesley, Ma, 1996.

Department of Mathematics, Penn State University, University Park, PennSYLVANIA 16802

E-mail address: mort@math.psu.edu

[^0]: 2000 Mathematics Subject Classification. 05A19.
 The author thanks the National Science Foundation for their generous support.

