
ON THE BROKEN 1-DIAMOND PARTITION

ERIC MORTENSON

Abstract. We introduce a crank-like statistic for a different class of partitions. In [AP],
Andrews and Paule initiated the study of broken k-diamond partitions. Their study of the
respective generating functions led to an infinite family of modular forms, about which they
were able to produce interesting arithmetic theorems and conjectures for the related partition
functions. Here we establish a crank-like statistic for the broken 1-diamond partition and discuss
its role in congruence properties.

1. Introduction and Statement of Results

Among the most celebrated results in the theory of partitions are Ramanujan’s congruences
for the partition function:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

We note that there are many different proofs and generalizations of these formulas. Dyson [D]
provided combinatorial insight into these congruences with a simple statistic called the rank.
Although this explains the first two congruences (see Atkin and Swinnerton-Dyer [AS]), it does
not explain the third. For the third, Dyson conjectured the existence of an additional statistic,
which he called the crank. Forty years after his conjecture was made, Andrews and Garvan ([G],
[AG]) defined a function and showed that it does indeed dissect the Ramanujan congruences
modulo 11; it also explains the modulo 5 and 7 congruences. As this paper shows, crank-like
statistics exist in other partition settings as well.

In [AP] Andrews and Paule, using MacMahon’s Partition Analysis, initiated the study of
broken k-diamond partitions. Their study of the respective generating functions led to an
infinite family of modular forms, about which they produced interesting arithmetic theorems
and conjectures for the related partition functions. In this paper, we introduce a new crank-
like statistic for this class of partitions. More specifically we consider the broken 1-diamond
partition, and motivated by works of Ahlgren and Ono ([O1], [AO]) and Mahlburg [M], we
discuss partition congruences associated to this statistic.

To introduce broken 1-diamond partitions, we follow the exposition in [AP], and begin with
a basic example of classical plane partitions, treated by MacMahon in [Ma]. Here, the non-
negative integer parts ai of the partitions are placed at the corners of a square such that the
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following order relations are satisfied:

(1.1) a1 ≥ a2, a1 ≥ a3, a2 ≥ a4, and a3 ≥ a4.

We use arrows as an alternative description for ≥ relations; for instance, Fig. 1 represents the
relations (1.1). We interpret an arrow pointing from ai to aj as ai ≥ aj .
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Figure 1. The inequalities (1.1)

In [Ma], MacMahon derives the general generating function using partition analysis

ϕ :=
∑

xa1

1 x
a2

2 x
a3

3 x
a4

4

=
1 − x2

1x2x3

(1 − x1)(1 − x1x2)(1 − x1x3)(1 − x1x2x3)(1 − x1x2x3x4)
,

(1.2)

the sum being over all non-negative integers ai satisfying (1.1). He further observes that by
setting x1 = x2 = x3 = x4 = q, the resulting generating function is

1

(1 − q)(1 − q2)2(1 − q3)
.

As in [AP], we now consider the plane partition diamond of length n.
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Figure 2. A plane partition diamond of length n

Definition 1.1. For n ≥ 1 define

Hn := {(a1, . . . , a3n+1) ∈ N3n+1 : the ai satisfy the relations in Fig. 2},

hn := hn(x1, . . . , x3n+1) :=
∑

(a1,...,a3n+1)∈Hn

xa1

1 x
a2

2 · · · x
a3n+1

3n+1 ,

and hn(q) := hn(q, . . . , q).

In [AP], they prove a generating function in closed form which specializes to
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Theorem 1.2. For n ≥ 1,

hn(q) =

∏n−1
j=0 (1 + q3j+2)

∏3n+1
j=1 (1 − qj)

.

Plane diamond partitions with a source deleted are then considered.

Definition 1.3. For n ≥ 1 define

H∗
n := {(a2, . . . , a3n+1) ∈ N3n: the ai satisfy the relations in

Fig. 2 where the vertex labelled a1 has been deleted},

h∗n := h∗n(y2, . . . , y3n+1) :=
∑

(a2,...,a3n+1)∈H∗

n

ya2

2 y
a3

3 · · · y
a3n+1

3n+1 ,

and h∗n(q) := h∗n(q, q, . . . , q).

Again, they prove a generating function which specializes to

Theorem 1.4. For n ≥ 1,

h∗n(q) =

∏n−1
j=0 (1 + q3j+1)
∏3n

j=1(1 − qj)
.

Combining these two notions, a broken 1-diamond partition consists of two separate plane
partition diamonds of length n, where in one of them the source is deleted.
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Figure 3. A broken 1-diamond of length 2n

Definition 1.5. For n ≥ 1 define

H♦
n := {(b2, . . . , b3n+1, a1, a2, . . . , a3n+1) ∈ N6n+1 : the ai and bi

satisfy all the relations in Fig. 3},

h♦
n := h♦

n(y2, . . . , y3n+1;x1, x2, . . . , x3n+1)

:=
∑

(b2,...,b3n+1,a1,a2,...,a3n+1)∈H♦
n

yb2
2 · · · y

b3n+1

3n+1 × xa1

1 x
a2

2 · · · x
a3n+1

3n+1 ,

and h♦
n(q) := h♦

n(q, q, . . . , q).

One sees that h♦
n = hnh

∗
n, and given Theorems 1.2 and 1.4, with n→ ∞, we have
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Theorem 1.6.

h♦
∞ =

∞
∏

j=1

(1 + qj)

(1 − qj)2(1 + q3j)
=
q

1

6 η(2τ) η
(

3τ
)

η(τ)3 η
(

6τ
) ,

where q = e2πiτ , and η(τ) := q
1

24

∏∞
n=1 (1 − qn) is Dedekind’s η-function.

Definition 1.7. For n ≥ 0, let ∆1(n) denote the total number of broken 1-diamond partitions,
∞
∑

n=0

∆1(n)qn := h♦
∞.

To state our results, more definitions are required. We define the following:

(1.3) D := {p prime : p ≡ 1, 25, 37, 47, 59, or 83 (mod 84)},

(1.4) δℓ := ℓ2−1
6 , εℓ := (−6

ℓ ),

(1.5) Sℓ := {β ∈ {0, 1, . . . , ℓ− 1} : (β+δℓ

ℓ ) = 0 or − εℓ)}.

Motivated by Ahlgren and Ono [AO], we show that for each prime ℓ ∈ D there is a Ramanujan-
type congruence.

Theorem 1.8. Suppose that ℓ ∈ D, k a positive integer, and β ∈ Sℓ. Then a positive proportion

of primes Q ≡ −1 (mod 6ℓ) have the property that,

∆1

(

Qn+ 1

6

)

≡ 0 (mod ℓk)

for all n ≡ 1 − 6β (mod 6ℓ) that are not divisible by Q.

Corollary 1.9. Suppose that ℓ ∈ D, k a positive integer, and β ∈ Sℓ. Then there are infinitely

many non-nested arithmetic progressions {An+B} ⊆ {ℓn+β} such that for every integer n we

have

∆1(An +B) ≡ 0 (mod ℓk).

We discuss a statistic and its role in the congruence properties of ∆1(n). In [AP], a straight-
forward proof of the following theorem is given.

Theorem 1.10. If n ≥ 0, then ∆1(2n + 1) ≡ 0 (mod 3).

Given λ = (b2, b3, b4, . . . a1, a2, a3, . . . ) ∈ H♦
∞, we now define a new statistic R to explain this

congruence.

Definition 1.11.

R(λ) :=
[

a1 −

∞
∑

i=0

max(a3i+3 − a3i+2, 0)
]

−
[

b2 −

∞
∑

j=1

max(b3j+3 − b3j+2, 0)
]

.(1.6)

The number of partitions of n with statistic m is denoted by R(m,n), and the number of
partitions of n with statistic congruent to m modulo N by R(m,N,n). This statistic then
provides a combinatorial proof of Theorem 1.10.

Theorem 1.12. For n ≥ 0, R(0, 3, 2n + 1) = R(1, 3, 2n + 1) = R(2, 3, 2n + 1).
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Motivated by Mahlburg [M], we can show that for each prime ℓ ∈ D , there is Ramanujan-type
congruence explained by this statistic.

Theorem 1.13. Suppose that ℓ ∈ D, k and j positive integers, and β ∈ Sℓ. Then a positive

proportion of primes Q ≡ −1 (mod 6ℓ) have the property that for every 0 ≤ m ≤ ℓj − 1,

R

(

m, ℓj ,
Qn+ 1

6

)

≡ 0 (mod ℓk)

for all n ≡ 1 − 6β (mod 6ℓ) that are not divisible by Q.

The following two corollaries are immediate.

Corollary 1.14. Suppose that ℓ ∈ D, k and j positive integers. Then there are infinitely many

non-nested arithmetic progressions An+B such that for every 0 ≤ m ≤ ℓj − 1,

R(m, ℓj , An+B) ≡ 0 (mod ℓk).

Corollary 1.15. Suppose that ℓ ∈ D, and k a positive integer. Then there are infinitely many

non-nested arithmetic progressions An + B such that the statistic provides a proof of the con-

gruence

∆1(An +B) ≡ 0 (mod ℓk).

In Section 2, in the spirit of the dissections for the generating functions of the crank and rank
found in Ramanujan’s Lost Notebook, as shown in [G], we prove Theorem 1.12.

In Section 3, we provide preliminaries on modular forms and Klein forms needed in the proofs
of Theorems 1.8 and 1.13. These proofs are found in Sections 4 and 5, respectively. The proofs
of two technical propositions are found in Section 6.
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2. The Statistic and its Generating Function

We begin by stating the closed forms of the generating functions that specialize to Theorems
1.2 and 1.4, respectively.

Theorem 2.1. Let X0 := 1, and Xm := x1x2 · · · xm, (m ≥ 1). For n ≥ 1,

hn(x1, x2, . . . , x3n+1) =

3n+1
∏

j=1

1

1 −Xj
×

n−1
∏

i=0

1 −X3i+1X3i+3

1 −X3i+1x3i+3
.

Theorem 2.2. Let Y1 := 1 and Yn := y2y3 . . . yn. For n ≥ 2,

h∗n(y2, y3, . . . , y3n+1) =

3n+1
∏

j=2

1

1 − Yj
×

n−1
∏

i=0

1 − Y3i+1Y3i+3

1 − Y3i+1y3i+3
.
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These generating functions are now used to establish a generating function for the statistic:

Theorem 2.3. We have the following generating function for the statistic R(m,n):

∞
∑

n=0

∞
∑

m=−∞

R(m,n)zmqn =
∏

n≥0

(1 − zq6n+4)(1 − z−1q6n+2)

(1 − zqn+1)(1 − q3n+2)(1 − z−1qn+1)(1 − q3n+1)
.

Proof of Theorem 2.3. To explain the first set of brackets in Definition 1.11, it suffices to examine
the following factor from Theorem 2.1:

1 − zX3i+1X3i+3

(1 − zX3i+2)(1 −X3i+1x3i+3)

=

∞
∑

k=0

(zX3i+1x3i+2)
k ·

1 − zX2
3i+1x3i+2x3i+3

1 −X3i+1x3i+3

=
1

1 −X3i+1x3i+3

{

∞
∑

k=0

zkXk
3i+1x

k
3i+2 −

∞
∑

k=0

zk+1Xk+2
3i+1x

k+1
3i+2x3i+3

}

=
1

1 −X3i+1x3i+3

{

1 +

∞
∑

k=1

zkXk
3i+1x

k
3i+2(1 −X3i+1x3i+3)

}

=

∞
∑

k=0

Xk
3i+1x

k
3i+3 +

∞
∑

k=1

zkXk
3i+2.

In other words, the z is effectively counting the contribution to the largest part in terms of
1/(1 − zXk), while ignoring the contribution from 1/(1 −X3i+1x3i+3). In a similar fashion, the
analogous factor from Theorem 2.2 explains the second set of brackets in Definition 1.11. The
generating function for the statistic follows. �

We define

(2.1) F (z, q) :=
(zq4; q6)∞(z−1q2; q6)∞

(zq; q)∞(z−1q; q)∞(q2; q3)∞(q; q3)∞
,

where this is the right hand side of the equation in Theorem 2.3, and we use Theorem 2.3 to
obtain the following dissection.

Theorem 2.4. Let ρ = e2πi/3, then

F (ρ, q) = A4,4(q
6) − ρq4A4,1(q

6) − ρ2q2A4,2(q
6),

where

Ak,i(q) :=
∏

1≤n 6≡0,±i (mod 2k+1)

1

1 − qn
.

We recall the notation for Ramanujan’s Theta function (p. 11, [AB]):

(2.2) f(a, b) :=
∑

n∈Z

an(n+1)/2bn(n−1)/2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞.
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A simple specialization gives,

(2.3)
∞
∑

n=−∞

(−1)nqan2+bn = (q2a; q2a)∞(q−b+a; q2a)∞(qb+a; q2a)∞.

The following two lemmas prove the above theorem.

Lemma 2.5. Let ρ = e2πi/3. Then F (ρ, q) = (ρq4; q6)∞(ρ−1q2; q6)∞.

Proof. This follows from a series of basic q-series manipulations.

F (ρ, q) =
(ρq4; q6)∞(ρ−1q2; q6)∞

(ρq; q)∞(ρ−1q; q)∞(q2; q3)∞(q; q3)∞

=
(ρq4; q6)∞(ρ−1q2; q6)∞

(ρq; q)∞(ρ−1q; q)∞(q2; q3)∞(q; q3)∞
·
(q; q)∞
(q; q)∞

=
(ρq4; q6)∞(ρ−1q2; q6)∞(q; q)∞

(q3; q3)∞(q2; q3)∞(q; q3)∞
= (ρq4; q6)∞(ρ−1q2; q6)∞.

�

Lemma 2.6. Let ρ = e2πi/3. Then

(ρq4; q6)∞(ρ−1q2; q6)∞ = A4,4(q
6) + ρq4A4,1(q

6) + ρ2q2A4,2(q
6).

Proof. With Ramanujan’s Theta function notation, we have

(ρq4;q6)∞(ρ−1q2; q6)∞ = (ρq4; q6)∞(ρ−1q2; q6)∞
(q6; q6)∞
(q6; q6)∞

=
1

(q6; q6)∞

∞
∑

n=−∞

(−ρq4)n(n+1)/2(−ρ−1q2)n(n−1)/2

=
1

(q6; q6)∞

∞
∑

n=−∞

(−1)nρnq3n2+n =
1

(q6; q6)∞

2
∑

k=0

ρk
∞
∑

n=−∞

(−1)3n+kq(3n+k)(9n+3k+1).

Substituting in the values of k, we obtain

(ρq4; q6)∞(ρ−1q2; q6)∞ =
1

(q6; q6)∞

{

∞
∑

n=−∞

(−1)nq3n(9n+1)

− ρ

∞
∑

n=−∞

(−1)nq(3n+1)(9n+4) + ρ2
∞
∑

n=−∞

(−1)nq(3n+2)(9n+7)
}

.

With (2.3), and more calculation, we obtain the desired result. �

Proof of Theorem 1.12. From Theorem 2.4 it is immediate that

∞
∑

m=−∞

R(m, 2n + 1)ρm =
2

∑

k=0

R(k, 3, 2n + 1)ρk = 0,

since F (z, q) is supported only on even powers of q. The left-hand side is polynomial in ρ = e2πi/3

over Z. Because the minimal polynomial for ρ over Q is p(x) = 1 + x+ x2, it follows that

R(0, 3, 2n + 1) = R(1, 3, 2n + 1) = R(2, 3, 2n + 1).
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�

3. Preliminaries for the Proofs of Theorems 1.8 and 1.13

3.1. Modular Forms Background. The reader can refer to [K] and [O] for basic facts about
modular forms. We note that there are several ways to produce new modular forms from old ones.
Among them are taking a twist, applying the Hecke Operator, and restricting the q-expansion
to terms that lie in certain arithmetic progressions.

Definition 3.1. Suppose that f(τ) =
∑∞

n=0 a(n)qn ∈ Mk(Γ0(N), χ), and that ψ is a Dirichlet
character. Then the twist of f by ψ is

(3.1) (f ⊗ ψ)(τ) :=
∑

n≥0

ψ(n)a(n)qn.

Definition 3.2. Suppose that f(τ) =
∑∞

n=0 a(n)qn ∈ Mk(Γ0(N), χ), and p ∤ N prime. Then

the action of the p-th Hecke Operator T k,χ
p := T (p) is given by

(3.2) f(τ) | T (p) :=
∑

n≥0

(a(pn) + χ(p)pk−1a(n/p))qn.

We also have the following basic properties:

Proposition 3.3. Suppose that f(τ) ∈ Mk(Γ0(N), χ), and p ∤ N prime. Then the action of

T (p) is space-preserving, i.e.,

f(τ) | T (p) ∈Mk(Γ0(N), χ).

If ψ is a character with modulus M , then

(f ⊗ ψ)(τ) ∈Mk(Γ0(NM
2), χψ2).

We note that the twist of a modular form by a quadratic character can be written in terms
of the slash operator. (We surpress the weight term in the slash operator as the expression is

independent of it). If p is a prime, where the Gauss sum g := gp =
∑p−1

v=1(
v
p)e2πiv/p, we can write

(see p. 128 [K])

(3.3) f(τ) ⊗
( ·

p

)

=
g

p

p−1
∑

v=1

(v

p

)

f(τ) |

(

1 −v/p
0 1

)

.

Discarding coefficients that lie in certain arithmetic progressions also produces modular forms.

Proposition 3.4. Suppose that f(τ) =
∑∞

n=1 a(n)qn ∈ Sk(Γ1(N)), where k is an integer. If

t ≥ 1 and 0 ≤ r ≤ t− 1, then
∑

n≡r (mod t)

a(n)qn ∈ Sk(Γ1(Nt
2)).

In Section 5 we will need to simultaneously find congruences for modular forms of differing
weights and levels. The following theorem is based on modifictions by Ahlgren and Ono [AO],
[O2], and Mahlburg [M] to a classical result due to Deligne and Serre on Galois representations
associated to modular forms.
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Theorem 3.5. Suppose that ki and Ni are integers, and that χi is a Dirichlet character for

1 ≤ i ≤ r. Let g1(τ), . . . , gr(τ) be integer weight modular forms with algebraic coefficients

such that gi(τ) ∈ Mki
(Γ0(Ni), χi). If M ≥ 1, then a positive proportion of primes p ≡ −1

(mod N1 · · ·NrM) have the property that for every i,

gi(τ) | T (p) ≡ 0 (mod M).

3.2. Siegel and Klein Forms. Kubert and Lang [KL] studied transformation properties for
certain modular functions which generalize η2(τ). These generalizations, known as Klein and
Siegel forms, are vital in studying the generating function of our statistic. Here we write

(3.4) q = qτ = e2πiτ , qz = e2πiz, and z = a1τ + a2.

Definition 3.6. Let (a1, a2) ∈ R2,

(1) The (a1, a2)-Siegel function has the q-expansion

g(a1,a2)(τ) := −q(1/2)B2(a1)
τ e2πia2(a1−1)/2(1 − qz)

∞
∏

n=1

(1 − qzq
n
τ )(1 − q−1

z qn
τ ),

where B2(X) = X2 −X + 1
6 is the second Bernoulli polynomial.

(2) The (a1, a2)-Klein form is given by

t(a1,a2)(τ) := −
i

2π
·
g(a1,a2)(τ)

η2(τ)
.

We have the following basic transformation properties (pp. 27-29 [KL]).

Proposition 3.7. If α =

(

a b
c d

)

∈ SL2(Z), then

t(a1,a2)(ατ) = t(a1,a2)α(τ).

Proposition 3.8. Let (a1, a2) ∈ R2 and (b1, b2) ∈ Z2. Writing

(a1 + b1, a2 + b2) = (a1, a1) + (b1, b2), we have

t(a1+b1,a2+b2)(τ) = t(a1,a2)+(b1,b2)(τ) = ε((a1, a2), (b1, b2))t(a1,a2)(τ),

where ε((a1, a2), (b1, b2)) has absolute value 1, and is given explicitly by

ε((a1, a2), (b1, b2)) = (−1)b1b2+b1+b2e2πi(b2a1−b1a2).

Letting the overbar denote reduction (mod N), the above two propositions show,

Corollary 3.9. If

(

a b
c d

)

∈ Γ0(N) and 0 ≤ s ≤ N − 1, then

t(0,s/N)(τ)
∣

∣

∣

−1

(

a b
c d

)

= β · t(0,ds/N)(τ),

where

β := e

( cs+(ds−ds)
2N +

cs(ds−ds)−cs·ds
2N2

)

.

The following corollary describes a general case in which the multiplier β is trivial. Here M !

denotes the space of weakly holomorphic forms.

Corollary 3.10. Let 0 ≤ r, s ≤ N − 1, then t(r/N,s/N)(τ) ∈M !
−1(Γ1(2N

2)).
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4. Proof of Theorem 1.8

The proof borrows techniques from [AO]. We first establish a key theorem, in that we con-
struct cusp forms whose coefficients capture the relevant values of ∆1(n). We recall the defintions
of D, ǫℓ, δℓ and Sℓ in (1.3), (1.4), and (1.5).

Theorem 4.1. Suppose ℓ ∈ D and that m is a positive integer. If β ∈ Sℓ, then there is an

integer λℓ,m and a modular form Fℓ,m,β(τ) ∈ Sλℓ,m
(Γ1(108ℓ

5)) ∩ Z[[q]] such that

Fℓ,m,β(τ) ≡
∞
∑

n=0

∆1(ℓn+ β)q18ℓn+18β−3 (mod ℓm).

The cusp form will be the product of two modular forms, one vanishing at all cusps a/c where
ℓ3 ∤ c, the other vanishing at all a/c where ℓ3 | c. The latter is where we need ℓ ∈ D. The
following useful proposition can be shown via basic facts about modular forms.

Proposition 4.2. Let ℓ ≥ 5 be a prime. We define Eℓ,t(τ) := ηℓt
(τ)

η(ℓtτ) .

(1) Eℓ,t(τ) ∈M ℓt−1
2

(Γ0(ℓ
t), χℓ,t), where χℓ,t(·) := ( (−1)

ℓt−1
2 ℓt

· ).

(2) If ℓ ∤ a, 0 ≤ b < t, then orda/ℓb(Eℓ,t) > 0, i.e. Eℓ,t(τ) vanishes at those cusps of Γ0(ℓ
t)

not equivalent to ∞.

(3) Eℓ,t(τ)
ℓm−1

≡ 1 (mod ℓm).

Define

(4.1)
1

g(τ)
:=

η(2τ)η(3τ)

η(τ)3η(6τ)
=

∞
∑

n=0

∆1(n)qn−
1
6 ,

If ℓ ≥ 5 is prime, one can show

(4.2) fℓ(τ) =

∞
∑

n=1

aℓ(n)qn :=
gℓ(ℓτ)

g(τ)
∈Mℓ−1(Γ0(6ℓ), χtriv).

This implies

(4.3)

∞
∑

n=1

aℓ(n)qn =
(

∞
∑

n=0

∆1(n)qn+δℓ

)

·

∞
∏

n=1

(1 − qℓn)3ℓ(1 − q6ℓn)ℓ

(1 − q2ℓn)ℓ(1 − q3ℓn)ℓ
.

Further, we can show

(4.4) f̃ℓ(τ) := fℓ(τ) − εℓ · fℓ ⊗ ( ·
ℓ)(τ) =

∞
∑

n=1

(1 − εℓ · (
n
ℓ ))aℓ(n)qn ∈Mℓ−1(Γ0(6ℓ

3), χtriv).

We want to show that the quotient f̃ℓ(τ)/g
ℓ(ℓτ) vanishes at all cusps a/c where ℓ3 | c, ℓ ∈ D.

We subdivide those cusps into four groups and define vi to be the order of vanishing of fℓ(τ) at
any cusp of a/c ∈ Ci, and v′i that of gℓ(ℓτ) .

(1) C1 := {a
c : 6ℓ3 | c}, v1 = ( ℓ2−1

24 · 4), v′1 = ( ℓ2

24 · 4)

(2) C2 := {a
c : 3ℓ3 | c, 2 ∤ c}, v2 = ( ℓ2−1

24 · 1), v′2 = ( ℓ2

24 · 1),

(3) C3 := {a
c : 2ℓ3 | c, 3 ∤ c}, v3 = ( ℓ2−1

24 · 4
3), v′3 = ( ℓ2

24 · 4
3 ),
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(4) C4 := {a
c : ℓ3 | c; 2, 3 ∤ c}, v4 = ( ℓ2−1

24 · 7
3), v′4 = ( ℓ2

24 · 7
3).

Next we have the following proposition whose proof we defer to Section 6.

Proposition 4.3. Given a
c ∈ Ci, 1 ≤ i ≤ 4, choose b, d such that

(

a b
c d

)

∈ SL2(Z), and define

α by fℓ

∣

∣

∣

(

a b
c d

)

= α · qvi + . . . , then

fℓ ⊗
( ·

ℓ

)
∣

∣

∣

(

a b
c d

)

=
(vi

ℓ

)

· α · qvi + . . . .

For ℓ ∈ D, quadratic reciprocity gives us,

(4.5) εℓ =
(v1
ℓ

)

=
(v2
ℓ

)

=
(v3
ℓ

)

=
(v4
ℓ

)

.

We note that for a/c ∈ Ci, and b, d chosen such that

(

a b
c d

)

∈ SL2(Z),

(4.6)
1

gℓ(ℓτ)

∣

∣

∣

(

a b
c d

)

= q−v′i + . . . .

Equation (4.4) and Proposition 4.3 yield,

Proposition 4.4. Given ℓ ∈ D and a cusp a/c such that ℓ3 | c,

(4.7) orda/c

( f̃ℓ(τ)

gℓ(ℓτ)

)

≥ vi + 1 − v′i > 0.

Proof of Theorem 4.1. We consider f̃ℓ(τ)
gℓ(ℓτ)

· Eℓ,3(τ)
ℓm′

. By Propositions 4.2(2) and 4.4, with m′

sufficiently large, this vanishes at all the cusps. By (4.3), (4.4) and Propositions 4.2(3), 4.4, we
have

f̃ℓ(τ)

gℓ(ℓτ)
· Eℓ,3(τ)

ℓm′

≡
∑

n≡0 (mod ℓ)

∆1(n− δℓ)q
n−

ℓ2

6(4.8)

+ 2 ·
∑

(
n
ℓ )=−εℓ

∆1(n− δℓ)q
n−

ℓ2

6 (mod ℓm).

It follows that f̃ℓ(18τ)
gℓ(ℓ18τ)

·Eℓ,3(18τ)
ℓm′

is a cusp form on Γ0(18 ·6ℓ
3), and we then apply Proposition

3.4. �

Proof of Theorem 1.8. Fix ℓ ∈ D, an integer β ∈ Sℓ, and write

(4.9) Fℓ,m,β(τ) =

∞
∑

n=1

aℓ,m,β(n)qn ≡
∑

n≡18β−3 (mod 18ℓ)

∆1

(

n+ 3

18

)

qn (mod ℓm).

By Theorem 3.5, for a positive proportion of primes Q ≡ −1 (mod 18ℓ),

(4.10) Fℓ,m,β(τ) | T (Q) ≡ 0 (mod ℓm).
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Theorem 1.8 then follows from the following. We see that if n ≡ 3 − 18β (mod 18ℓ), that
Qn ≡ 18β − 3 (mod 18ℓ); and if gcd(Q, n) = 1, we can use (3.2) to obtain

(4.11) 0 ≡ aℓ,m,β(Qn) ≡ ∆1

(

Qn+ 3

18

)

(mod ℓm).

�

5. Proof of Theorem 1.13

We borrow techniques from [AO] and [M], and begin by producing a generating function for
R(m,N,n) in terms of Klein forms. We again remind ourselves of the defintions of D, ǫℓ, δℓ
and Sℓ in (1.3), (1.4), and (1.5). Recalling (2.1), setting N := ℓj, ζ := e2πi/N , λ a partition, and
letting 0 ≤ s ≤ N − 1, we examine the sum

1

N

N−1
∑

s=0

F (ζs, z)ζ−ms =
1

N

N−1
∑

s=0

∑

λ

ζR(λ)·s−msq|λ|(5.1)

=
∑

λ

q|λ|
(

1

N
ζs(R(λ)−m)

)

=
∑

n≥0

R(m,N,n)qn,

which leads to

∑

n≥0

R(m,N,n)qn =
1

N

N−1
∑

s=1

(ζsq4; q6)∞(ζ−sq2; q6)∞ζ
−ms

(ζsq; q)∞(ζ−sq; q)∞(q2; q3)∞(q; q3)∞
(5.2)

+
1

N

∑

n≥0

∆1(n)qn.

We recall (4.1), Definition 3.6, and make the substitution ζ → ζ−1 to obtain

(5.3)
∑

n≥0

R(m,N,n)qn =

N−1
∑

s=1

hsq
1
6

g(τ)
·
t(1/3,s/N)(6τ)

t(0,s/N)(τ)
·
η3(6τ)

η(2τ)
·
ζms

N
+

1

N

∑

n≥0

∆1(n)qn,

where hs := −ζs/2(1 − ζ−s)/ζ−s/6.
Now we define a function more amenable to being analyzed by modular forms:

gm(τ) :=
(

∑

n≥0

N · R(m,N,n)qn+δℓ

)

∏

n≥1

(1 − qℓn)ℓ(1 − q6ℓn)ℓ

(1 − q2ℓn)ℓ(1 − q3ℓn)ℓ
(5.4)

=

N−1
∑

s=1

gℓ(ℓτ)

g(τ)
·
hst(1/3,s/N)(6τ)

t(0,s/N)(τ)
·
η3(6τ)

η(2τ)
+
gℓ(ℓτ)

g(τ)
,

with Pm(τ) and P (τ) denoting the two summands in the final expression.
As in the previous section, we proceed to relate gm(τ) to cusp forms by first subdividing the

cusps a/c, ℓN |c into four groups.

(1) C′
1 := {a

c : 6ℓN | c},
(2) C′

2 := {a
c : 3ℓN | c, 2 ∤ c},

(3) C′
3 := {a

c : 2ℓN | c, 3 ∤ c},
(4) C′

4 := {a
c : ℓN | c; 2, 3 ∤ c}.
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The following proposition will be proved in Section 6:

Proposition 5.1. Given 1 ≤ s ≤ N − 1, a
c ∈ C′

i, pick b, d with

(

a b
c d

)

∈ SL2(Z). Define αs by

gℓ(ℓτ)

g(τ)

t(1/3,s/N)(6τ)

t(0,s/N)(τ)

η3(6τ)

η(2τ)

∣

∣

∣

(

a b
c d

)

= αs · q
vi + . . . .

Then
gℓ(ℓτ)

g(τ)

t(1/3,s/N)(6z)

t(0,s/N)(τ)

η3(6τ)

η(2τ)
⊗

( ·

ℓ

)
∣

∣

∣

(

a b
c d

)

=
(vi

ℓ

)

· αs · q
vi + . . . ,

where the vi’s are as in the previous section.

With this and previous arguments, we prove the following proposition, which provides us with
a theorem crucial to the proof of Theorem 1.13. We recall the tilde notation from (4.4) for the
following theorem and proposition.

Proposition 5.2. Let ℓ ∈ D. If k is sufficiently large, there exist integers λ, λ′ ≥ 1 and some

Dirichlet character χ such that

(1) P̃ (18τ)
gℓ(18ℓτ)

· Ej+1(18τ)
ℓk

∈ Sλ′(Γ0(108ℓ
max{3,j+1}), χ)

(2) P̃m(18τ)
gℓ(18ℓτ)

·Ej+1(18τ)
ℓk

∈ Sλ(Γ1(1944ℓ
2N2)).

Proof of Proposition 5.2. For (1), recall that P (τ) = gℓ(ℓτ)
g(τ) ∈Mℓ−1(Γ0(6ℓ), χtriv) and then mod-

ify the arguments of the previous section.
For the (2), we know that Ej+1(τ) vanishes at each cusp a/c, ℓN ∤ c. Once k is taken to

be sufficiently large, it only remains to show that P̃m(τ)/gℓ(ℓτ) vanishes at each cusp a/c with
ℓN | c, but this follows from Proposition 5.1, equation (4.5), and quadratic reciprocity. To
determine the appropriate level of the congruence subgroup, basic facts about modular forms
and Corollary 3.10 yield Pm(3τ) ∈M !

ℓ(Γ1(2
2 · 34 ·N2)), and the rest is straightforward. �

Combining the above proposition with the definition of gm(τ) in (5.4) and the congruence
properties from Proposition 4.2, we obtain the following theorem. This is essentially heading in
the same direction as that of Theorem 4.1; here, however, we work with two modular forms.

Theorem 5.3. For k ≥ 0 and 0 ≤ m ≤ N − 1 there is a character χ, positive integers λ and

λ′, and modular forms

(1) F(τ) ∈ Sλ′(Γ0(108ℓ
max{3,j+1}), χ), and

(2) Fm(τ) ∈ Sλ(Γ1(1944ℓ
2N2)),

such that
g̃m(18τ)
gℓ(18ℓτ)

≡ Fm(τ) + F(τ) (mod ℓk).

Proof of Theorem 1.13. By (4.4) and (5.4), we have

g̃m(18τ)

gℓ(18ℓτ)
=

∑

n≡0 (mod ℓ)

N · R(m,N,n − δℓ)q
18n−3ℓ2(5.5)

+ 2
∑

(
n
ℓ )=−εℓ

N · R(m,N,n − δℓ)q
18n−3ℓ2
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Restricting the above sum to those indices n′ ≡ β + δℓ (mod ℓ), β ∈ Sℓ, yields a new series
where λβ equals 1 if β = −δℓ and equals 2 otherwise.

gm,β(τ) : = λβ ·
∑

n′=β+δℓ+ℓn

N · R(m,N,n′ − δℓ)q
18n′−3ℓ2(5.6)

= λβ ·
∑

n≥0

N · R(m,N, ℓn + β)q18β+18δℓ+18ℓn−3ℓ2

= λβ ·
∑

n≡18β−3 (mod 18ℓ)

N · R

(

m,N,
n+ 3

18

)

qn

However, upon examining Theorem 5.3, we can restrict the q-expansions of Fm(τ) and F(τ)
to those indices with n′ ≡ β + δℓ (mod ℓ) to obtain

(5.7) gm,β(τ) ≡ Fm,β(τ) + Fβ(τ) (mod ℓk),

and the following from Proposition 3.4:

Fm,β(τ) ∈ Sλ(Γ1(1944ℓ
4N2)),(5.8)

Fβ(τ) ∈ Sλ′(Γ0(108ℓ
2+max{3,j+1}), χ).(5.9)

Theorem 3.5 provides a positive proportion of primes Q ≡ −1 (mod 18ℓ) such that

(5.10) Fm,β(τ) | T (Q) ≡ Fβ(z) | T (Q) ≡ 0 (mod ℓk)

for all m. This in turn gives that gm,β(τ) | T (Q) ≡ 0 (mod ℓk) for all m. Arguing as in the
proof of Theorem 1.8 we obtain for all n ≡ 3 − 18β (mod 18ℓ), gcd(n,Q) = 1 that

λβ ·N · R

(

m,N,
Qn+ 3

18

)

≡ 0 (mod ℓk).

Theorem 1.13 follows by noting that because N is fixed and k is arbitrary, dividing by N proves
the congruences. �

6. Proofs of Propositions 4.4 and 5.1

6.1. Proof of Proposition 4.4. We restrict ourselves to the case 2ℓN | c, 3 ∤ c, the other

three cases being similar. Let δ ∈ Z+,

(

a b
c d

)

∈ SL2(Z), and (·, ·) denote the greatest common

divisor, then we can write
(

δa δb
c d

)

=

(

δa/(c, δ) γδ,b

c/(c, δ) γδ,d

)(

(c, δ) Bδ

0 δ/(c, δ)

)

,(6.1)

(

ℓδa ℓδb
c d

)

=

(

δa/(c, δ) γ′δ,b
c/ℓ(c, δ) γ′δ,d

)(

ℓ(c, δ) ℓBδ

0 δ/(c, δ)

)

,(6.2)

where the left matrix in each product is in SL2(Z),

(6.3) γ′δ,d := γδ,d, γ
′
δ,b := ℓγδ,b, and Bδ = γδ,d · δ · b− γδ,b · d.

The transformation formula for Dedekind’s eta function (see p. 163 [R]) yields,

(6.4)
ηℓ(ℓδτ)

η(δτ)

∣

∣

∣

(

a b
c d

)

=
(δa/(c, δ)

ℓ

)

e
2πi
24 (ℓ2−1)

(c,δ)
δ Bδq

1
24

(c,δ)2

δ (ℓ2−1) + . . . .
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It then follows

(6.5) fℓ(τ)
∣

∣

∣

(

a b
c d

)

= α · qov + . . . .

where

α : = e
2πi
24 (ℓ2−1)

{ (c,1)
1 3B1−

(c,2)
2 B2−

(c,3)
3 B3+

(c,6)
6 B6

}

,(6.6)

ov : = 1
24 (ℓ2 − 1){ (c,1)2

1 3 − (c,2)2

2 − (c,3)2

3 + (c,6)2

6 }.

We note ov = v3. By recalling how γδ,b, γδ,d, and Bδ were defined,

(

3a 3b
c d

)

=

(

3a γ3,b

c γ3,d

)(

1 B3

0 3

)

,

(

6a 6b
c d

)

=

(

3a γ6,b

c/2 γ6,d

)(

2 B6

0 3

)

,(6.7)

and by setting γ6,d := γ3,d, and γ6,b := 2γ3,b, we can relate B3 and B6:

B6 = γ6,d · 6 · b− γ6,b · d = 2 · B3.(6.8)

With this and the fact that 24 | ℓ2 − 1, the expression for α simplifies to

(6.9) α = e
2πi
24 (ℓ2−1)

{

1
3B3

}

= e
2πi
24 (ℓ2−1)

{−γ3,b

3 d
}

.

We recall expression (3.3), define γν :=

(

1 −ν/ℓ
0 1

)

, and choose ν ′ ≡ d2ν (mod ℓ):

fℓ ⊗ ( ·
ℓ)(τ)

∣

∣

∣

(

a b
c d

)

=
g

ℓ

ℓ−1
∑

ν=0

(ν

ℓ

)

fℓ

∣

∣

∣

[

γν

]
∣

∣

∣

[

(

a b
c d

)

]

(6.10)

=
g

ℓ

ℓ−1
∑

ν=0

(ν

ℓ

)

fℓ

∣

∣

∣

[

γν

(

a b
c d

)

γν′
−1γν′

]

=
g

ℓ

ℓ−1
∑

ν=0

(ν

ℓ

)

fℓ

∣

∣

∣

[

γν

(

a b
c d

)

γν′
−1

]
∣

∣

∣

[

γν′

]

.

By choice of ν ′,

(6.11) γν

(

a b
c d

)

γν′
−1 =

(

a− cν/ℓ b+ (ν ′a− νd)/ℓ− cνν ′/ℓ2

c d+ cν ′/ℓ

)

=:

(

a′ b′

c′ d′

)

,

and thus define a′, b′, c′, d′. Using (6.5) and (6.9),

fℓ ⊗ ( ·
ℓ)(τ)

∣

∣

∣

(

a b
c d

)

=
g

ℓ

ℓ−1
∑

ν=0

(ν

ℓ

)

e
2πi
24 (ℓ2−1)

{−γ′

3,b
·d′

3 −
4
3

(ν′)
ℓ

}

qv3 + . . . .(6.12)
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Considering the analog of (6.1) for (6.11), one sees that γ′3,b ≡ γ3,b (mod 3). Coupled with the

definition d′ := d+ cν ′/ℓ we have

fℓ ⊗ ( ·
ℓ)(τ)

∣

∣

∣

(

a b
c d

)

=
g

ℓ

ℓ−1
∑

ν=0

(ν

ℓ

)

e
2πi
24 (ℓ2−1)

{−γ3,b·d
3

}

e
2πi
24 (ℓ2−1)

{−γ3,b·c
3 −

4
3

}

ν′

ℓ qv3 + . . .(6.13)

=
g

ℓ

ℓ−1
∑

ν=0

(ν

ℓ

)

· α · e
2πi
24 (ℓ2−1)

{−γ3,b·c
3 −

4
3

}

ν′

ℓ qv3 + . . . .

Recalling (6.1), we note 3a · γ3,d − γ3,b · c = 1, and therefore −γ3,b · c ≡ 1 (mod 3). From this it

is clear that
−γ3,b·c

3 − 4
3 ∈ Z and that

fℓ ⊗ ( ·
ℓ )(τ)

∣

∣

∣

(

a b
c d

)

=
g

ℓ
· g ·

( 2πi
24 (ℓ2 − 1){

−γ3,b·c
3 − 4

3}

ℓ

)

· αqv3 + . . .(6.14)

=
g2

ℓ

(−1

ℓ

)(v3
ℓ

)

· αqv3 + · · · =
(v3
ℓ

)

· αqv3 + . . . .

6.2. Proof of Proposition 5.1. We examine the case 2ℓN | c, 3 ∤ c. For the sake of exposition
we further refine it to the subcase 4 | c, with the other cases being similar. We compute the lead

term for each of Pm,s(τ)
∣

∣

∣

(

a b
c d

)

and Pm,s ⊗ ( ·
ℓ)(τ)

∣

∣

∣

(

a b
c d

)

, where from Section 5,

(6.15) Pm,s(τ) :=
gℓ(ℓτ)

g(τ)

hst(1/3,s/N)(6τ)

t(0,s/N)(τ)

η3(6τ)

η(2τ)
.

We reduce the problem to finding the lead terms for each of the expansions:

gℓ(ℓτ)

g(τ)

∣

∣

∣

(

a b
c d

)

, t(1/3,s/N)(6τ)
∣

∣

∣

(

a b
c d

)

,
1

t(0,s/N)(τ)

∣

∣

∣

(

a b
c d

)

, and
η3(6τ)

η(2τ)

∣

∣

∣

(

a b
c d

)

.

From the previous subsection:

(6.16)
gℓ(ℓτ)

g(τ)

∣

∣

∣

(

a b
c d

)

= e
2πi
24 (ℓ2−1)(

−γ3,b·d
3 ) · q

1
24 (ℓ2−1)

4
3 + . . . .

By Corollary 3.9,

(6.17)
1

t(0,s/N)(τ)

∣

∣

∣

(

a b
c d

)

=
1

βst(0,ds/N)(τ)
=

1

βs(
−i
2π )ωds

· q0 + . . . .

Using the transformation law for Dedekind’s eta function,

(6.18)
η3(6τ)

η(2τ)

∣

∣

∣

(

a b
c d

)

=
(c/2

3

)

e
πi
12 {4ac} · q0 + . . . .

For the Klein form, we require more work. Note,

(6.19)

(

6a 6b
c d

)

=

(

3a γ6,b

c/2 γ6,d

)(

2 B6

0 3

)

,
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where the left matrix in the product is in SL2(Z). By Propositions 3.7 and 3.8,

t(1/3,s/N)(6τ)
∣

∣

∣

(

a b
c d

)

= t(1/3,s/N)

((

3a γ6,b

c/2 γ6,d

)

(2
3τ +B6)

)

(6.20)

= t(
a+ cs

2N
,
γ6,b

3 +
γ6,d·s

N

)(2
3τ +B6) = t(a1,a2)+(b1,b2)(

2
3τ +B6)

= ε((a1, a2), (b1, b2))t(a1,a2)(
2
3τ +B6),

where

(6.21) (a1, a2) :=
(

0,
γ6,b

3 +
γ6,d·s

N

)

, (b1, b2) :=
(

a+ cs
2N ,

γ6,b−γ6,b

3 +
γ6,d·s−γ6,d·s

N

)

,

and the overbars mean (mod 3) and (mod N) respectively. By Proposition 3.8,

t(1/3,s/N)(6τ)
∣

∣

∣

(

a b
c d

)

= eπi(b1b2+b1+b2−b1a2−a2)(1 − a2πia2) · q0 + . . . .(6.22)

Piecing together the four lead terms and including hs,

αs :=hs · e
2πi

(

ℓ2−1
24

)(−γ3,b·d
3

)

·
1

βs · (
−i
2π ) · ωds

·
(c/2

3

)

e
πi
12 {4ac}(6.23)

· eπi(b1b2+b1+b2−b1a2−a2) · (1 − e2πia2),

so

(6.24) Pm,s(τ)
∣

∣

∣

(

a b
c d

)

= αs(a, b, c, d) · q
v3 + . . .

We consider the expansion of the twisted term. We recall the defintions of a′, b′, c′, d′ in (6.11)
and note that a′1 = a1, a

′
2 = a2. After much calculation we obtain

α′
s = αs

g

ℓ

ℓ−1
∑

ν=0

(ν

ℓ

)

· e
2πi
24 (ℓ2−1)

{−γ3,b·c−4
3

}

ν′

ℓ · e
πi
12{−4c2

ν
ℓ }(6.25)

· eπi(b′1b′2−b1b2+b′1−b1+b′2−b2−a2(b′1−b1)),

so

Pm,s ⊗ ( ·
ℓ)(τ)

∣

∣

∣

(

a b
c d

)

= αs ·
{g

ℓ

ℓ−1
∑

ν=0

[(ν

ℓ

)

· e
2πi
24 (ℓ2−1)

{−γ3,b·c−4
3

}

ν′

ℓ(6.26)

· e2πi{−
c2ν
6ℓ +

1
2(b′

1
b′
2
−b1b2+b′

1
−b1+b′

2
−b2−a2(b′

1
−b1))}qv3

]}

.

To demonstrate that the second exponential is in fact 1, we first note that

(6.27) b′1 = b1 − cν/ℓ and b′2 = b2 +
γ6,b−γ6,b

3 +
γ6,d·s−γ6,d·s

N .

Noting that a is odd and 4ℓN | c,

e2πi
{

−
c2ν
6ℓ +

1
2(b′1b′2−b1b2+b′1−b1+b′2−b2−a2(b′1−b1))

}

= e2πi
{

−
c2ν
6ℓ +

1
2

{(

a+
cs
2N +1

)(

b′2−b2
)

+a2c
ν
ℓ

}}

= e2πi
{

−
c2ν
6ℓ +

c
2

{

a2
ν
ℓ

}}

= e2πi
{

−
c2ν
6ℓ +

c
2

{(γ6,b

3 +
γ6,d·s

N

)

ν
ℓ

}}

= e2πi
{

c
2

(γ6,b−c
3

)

ν
ℓ

}

.
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To show c
2(

γ6,b−c
3 )ν

ℓ ∈ Z it suffices to show
γ6,b−c

3 ∈ Z. Recall

(

3a γ6,b

c/2 γ6,d

)

∈ SL2(Z), so

3a · γ6,d − γ6,b ·
c
2 = 1, which implies γ6,b · (

c
2 ) ≡ −1 (mod 3). This gives that γ6,b − c ∈ 3Z. For

example, if γ6,b ≡ 1 (mod 3) then c
2 = 3r + 2 which implies that c ≡ 1 (mod 3). It then follows

Pm,s ⊗ ( ·
ℓ)(τ)

∣

∣

∣

(

a b
c d

)

= αs ·
{g

ℓ

ℓ−1
∑

ν=0

(ν

ℓ

)

· e
2πi
24 (ℓ2−1)

{−γ3,b·c−4
3

}

ν′

ℓ · qv3

}

+ . . .(6.28)

= αs

(v3
ℓ

)

qv3 + . . . .
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