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Abstract. In this paper we prove a p-adic supercongruence conjecture of van Hamme by
placing it in the context of the Beukers-like supercongruences of Rodriguez-Villegas. This
conjecture is a p-adic analog of a formula of Ramanujan.

1. Introduction

Recently, van Hamme [vH] made several conjectures concerning p-adic analogs of several
formulas of Ramanujan. In this paper we prove one of these conjectures by making a connection
between it and one of the Beukers-like supercongruences discovered by Rodriguez-Villegas [FRV].

We begin with numbers Apery used in his proof of the irrationality of ζ(2) and ζ(3):

A(n) :=
n

∑

k=0

(

n

k

)2(
n + k

k

)2

,

B(n) :=
n

∑

k=0

(

n

k

)2(
n + k

k

)

,

where

(a)k := a(a + 1) · · · (a + k − 1), and

(

n

k

)

:=
(−1)k(−n)k

k!
,

are the standard notations for the raising factorial and binomial coefficent respectively. For p

an odd prime, Beukers made the following two conjectures concerning these numbers and the
coefficients of two modular forms:

(1.1) A
(p − 1

2

)

≡ a(p) (mod p2),

(1.2) B
(p − 1

2

)

≡ b(p) (mod p2),

where
∞
∑

k=0

a(n)qn := q · Π∞
n=1(1 − q2n)4(1 − q4n)4 ∈ S4(Γ0(8)), and

∞
∑

k=0

b(n)qn := q · Π∞
n=1(1 − q4n)6 ∈ S3(Γ0(16), (

−4
d

)), q := e2πiz .
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Both of these conjectures have multiple guises. Another form of (1.2) is found in [vH]:

(1.3)

p−1
2

∑

k=0

(−1)k
(−1

2

k

)3

≡ b(p) (mod p2).

Beukers proved these modulo p, [Be1], [Be2]. For (1.1), a partial proof was given by Ishikawa
[I], and a complete proof was given by Ahlgren and Ono [AO]. For (1.3), proofs have been given
by Ishikawa [I], van Hamme [vH], and Ahlgren [A]. (For techniques that yield a computer free
version of [A], see Mortenson [M3]. ) Finite field analogs of classical hypergeometric series [G]
play large roles in [AO], [A], and [M3].

In [FRV], Rodriguez-Villegas discovered numerically a number of Beukers-like supercongru-
ences. This was motivated by his joint work with Candelas and de la Ossa [COV], where they
studied Calabi-Yau manifolds over finite fields. For proofs of some of these congruences, see [M1],
[M2], [M3], and [K], where again the theory of finite field analogs of classical hypergeometric
series plays a large role. (The supercongruence of [K] is also found in the list of conjectures in
[vH]). For example, we have the following:

Theorem 1.1. [M1], [M2] Let p be an odd prime p ≥ 5, and denote by φp(x) the Legendre

symbol modulo p. Then

p−1
2

∑

k=0

(1
2)k(

1
2 )k

k!2
≡ φp(−1) (mod p2).

It should be noted that the proof in [M1] is software package dependent, whereas the proof in
[M2] is not.

The motivation for this research comes from a recent paper by McCarthy and Osburn [McO],
where they prove the following conjecture of van Hamme [[vH], page 226, (A.2)]:

Conjecture. [vH] (A.2) If p is an odd prime, then

p−1
2

∑

k=0

(4k + 1)

(−1
2

k

)5

≡ p · b(p) (mod p3).

Upon examining their proof, one is immediately struck by the strong shadow of one of Beukers’
supercongruences, e.g. (1.3). In other words, one finds,

p−1
2

∑

k=0

(4k + 1)

(−1
2

k

)5

≡ p ·

p−1
2

∑

k=0

(−1)k
(−1

2

k

)3

(mod p3).

This leads one to speculate as to the potential role of other Beukers-like supercongruences,
and brings us to the goal of this paper. With this idea, Theorem 1.1, and the arsenal of
transformation formulas for generalized hypergeometric series found in Bailey’s tract [B], we
prove the next supercongruence conjecture on van Hamme’s list [[vH], page 226, (B.2)]:
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Conjecture. [vH] (B.2) Let p be an odd prime, then

p−1
2

∑

k=0

(4k + 1)

(−1
2

k

)3

≡ p · φp(−1) (mod p3).

This is the p-adic analog of the following formula of Ramanujan [[vH], page 226, (B.1)]:

∞
∑

k=0

(4k + 1)

(−1
2

k

)3

=
2

π

The paper is organized as follows. In section 3 we recall necessary background information
and in section 4 we prove a technical lemma. In section 5, we prove van Hamme’s conjecture
(B.2).
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3. Background information

We begin this section by recalling a theorem of Morley.

Theorem 3.1. [Mo] Let p be an odd prime. Then

22p−2 ≡ φp(−1)

(

p − 1
p−1
2

)

(mod p3).

We recall the gamma function as defined by Weierstrass and found in [[WW], Ch. XII].

Definition 3.2. Let z ∈ C, then

1

Γ(z)
:= zeγzΠ∞

n=1

{(

1 +
z

n

)

e−
z
n

}

,

where γ is Euler’s constant.

From this definition it is apparent that Γ(z) is analytic except at the points z = 0,−1,−2, . . . ,
where it has simple poles. We also recall some gamma function properties, which are found in
[[WW], CH. XII].

Proposition 3.3. Let z ∈ C. Then the following are true,

1. Γ(1) = 1,

2. Γ(1
2) = π

1
2 ,

3. Γ(z + 1) = zΓ(z),
4. Γ(z)Γ(1 − z)= π

sin(πz) ,

5. 22z−1Γ(z)Γ(z + 1
2) = Γ(1

2)Γ(2z).
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Lastly, we recall some generalized hypergeometric series transformations as found in Bailey’s
tract [B]. The first may be viewed as a specialization of Whipple’s famous 7F6 transformation
[B, p.28]. The specialization is

6F5

(

a, 1 + 1
2a, b, c, d, e

1
2a, 1 + a − b, 1 + a − c, 1 + a − d, 1 + a − e

| −1

)

=
Γ(1 + a − d)Γ(1 + a − e)

Γ(1 + a)Γ(1 + a − d − e)
3F2

(

1 + a − b − c, d, e

1 + a − b, 1 + a − c
| 1

)

,(3.1)

where

n+1Fn

(

a0, a1, . . . , an

b1, . . . , bn
| t

)

=

∞
∑

k=0

(a0)k(a1)k · · · (an)kt
k

k!(b1)k · · · (bn)k
.

is the classical hypergeometric series.
We recall a transformation formula for a terminating 3F2 [B, p.22, eq. 1]:

Γ(e + m)Γ(f + m)

Γ(s)Γ(e)Γ(f)
·3 F2

(

a, b, −m

e, f
| 1

)

=
(−1)m · Γ(1 − a)Γ(1 − b)

Γ(1 − a)Γ(s − m)Γ(1 − b − m)
· 3F2

(

e − b, f − b, −m

1 − b − m, s − m
| 1

)

(3.2)

where s := e + f − a − b + m, and m is a positive integer. Here we are careful, because we will
eventually look at the limit as a goes to one.

4. A technical lemma

Here we show a technical lemma, which appears in the proof of Conjecture (B.2).

Lemma 4.1. Let n = 2t + 1 be a postive odd integer, and ω = −1
2 + i

√
3

2 . Then

Γ(1 + ω n
2 )Γ(1 + ω2 n

2 )

Γ(1
2 − ω n

2 )Γ(1
2 − ω2 n

2 )
=

22n−2

Π
n−1

2
k=1 ((2k − 1)2 + 3n2)

.

Proof. We use Proposition 3.3 (4) to write

Γ(1 + ω n
2 )Γ(1 + ω2 n

2 )

Γ(1
2 − ω n

2 )Γ(1
2 − ω2 n

2 )

=
π

sin(−πω n
2 )

π

sin(−πω2 n
2 )

1

Γ(−ω n
2 )Γ(1

2 − ω n
2 )

1

Γ(−ω2 n
2 )Γ(1

2 − ω2 n
2 )

.

Writing sine in terms of the exponential function and simplifying, we obtain

π

sin(−πω n
2 )

π

sin(−πω2 n
2 )

1

Γ(−ω n
2 )Γ(1

2 − ω n
2 )

1

Γ(−ω2 n
2 )Γ(1

2 − ω2 n
2 )

=
4π2

eπ
√

3
n
2 + e−π

√
3

n
2

· 1

Γ(−ω n
2 )Γ(1

2 − ω n
2 )

1

Γ(−ω2 n
2 )Γ(1

2 − ω2 n
2 )

.
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Using the duplication formula of Proposition 3.3 (5), yields

4π2

eπ
√

3
n
2 + e−π

√
3

n
2

· 1

Γ(−ω n
2 )Γ(1

2 − ω n
2 )

1

Γ(−ω2 n
2 )Γ(1

2 − ω2 n
2 )

=
4π2

eπ
√

3
n
2 + e−π

√
3

n
2

· 2−ωn−1

Γ(1
2)Γ(−ωn)

2−ω2n−1

Γ(1
2 )Γ(−ω2n)

=
π

eπ
√

3
n
2 + e−π

√
3

n
2

· 2n

Γ(−ωn)Γ(−ω2n)
,

where in the last step we have have used Γ(1
2)2 = π. Recalling n = 2t+1 where t is a nonnegative

integer, we find

π

eπ
√

3
n
2 + e−π

√
3

n
2

· 2n

Γ(−ωn)Γ(−ω2n)

=
π

eπ
√

3
n
2 + e−π

√
3

n
2

· 2n

Γ(t + 1
2 − n

2 i
√

3)Γ(t + 1
2 + n

2 i
√

3)

=
π

eπ
√

3
n
2 + e−π

√
3

n
2

· 2n

Π
n−1

2
k=1 ((k − 1

2)2 + 3
4n2)Γ(1

2 − n
2 i
√

3)Γ(1
2 + n

2 i
√

3)

=
1

eπ
√

3
n
2 + e−π

√
3

n
2

· 2nsin(π
2 − πn

2 i
√

3)

Π
n−1

2
k=1 ((k − 1

2)2 + 3
4n2)

=
2n−1

Π
n−1

2
k=1 ((k − 1

2)2 + 3
4n2)

,

where the penultimate line follows from repeated application of Proposition 3.3 (3), and the
ultimate line follows from Proposition 3.3 (4). The conclusion of the lemma easily follows. �

5. Proof of Conjecture (B.2)

Using an idea of McCarthy and Osburn [McO], we make the following choice of variables in
equation (3.1). (An idea akin to this is also found in [vH]). We let a = 1

2 , b = 1
2 − ω p

2 , c =
1
2 − ω2 p

2 , d = 1
2 − p

2 , e = 1 where ω = −1
2 + i

√
3

2 , to produce

6F5

(

1
2 , 5

4 , 1
2 − ω p

2 , 1
2 − ω2 p

2
1
2 − p

2 , 1
1
4 , 1 + ω p

2 , 1 + ω2 p
2 , 1 + p

2 , 1
2

| −1

)

=
Γ(1 + p

2)Γ(1
2 )

Γ(3
2 )Γ(p

2 )
3F2

(

1
2 − p

2 , 1
2 − p

2 , 1
1 + ω p

2 , 1 + ω2 p
2

| 1

)

.

This one can consider (mod p3), and by using appropriate gamma function properties, one
obtains

(5.1)

p−1
2

∑

k=0

(4k + 1)

(−1
2

k

)3

≡ p ·

p−1
2

∑

k=0

(1
2 − p

2)k(
1
2 − p

2)k

(1 + ω p
2)k(1 + ω2 p

2)k
(mod p3).

We now focus on the coefficient of p on the right hand side of equation (5.1). We recall

equation (3.2) and let a = 1 + ǫ, b = 1
2 − p

2 ,m = p−1
2 , e = 1 + ω p

2 , f = 1 + ω2 p
2 , to obtain
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Γ(1
2 − ω2 p

2)Γ(1
2 − ω p

2)

Γ(p
2 − ǫ)Γ(1 + ω p

2)Γ(1 + ω2 p
2)

· 3F2

(

1 + ǫ, 1
2 − p

2 , 1
2 − p

2
1 + ω p

2 , 1 + ω2 p
2

| 1

)

=
(−1)

p−1
2 · Γ(−ǫ)Γ(1

2 + p
2 )

Γ(−ǫ)Γ(1
2 − ǫ)Γ(1)

·3F2

(

1
2 − ω2 p

2 , 1
2 − ω p

2 , 1
2 − p

2
1, 1

2 − ǫ
| 1

)

.

Isolating the hypergeometric series on the left, taking the limit as ǫ goes to 0, and then examining
everything (mod p3) yields,

p−1
2

∑

k=0

(1
2 − p

2 )k(
1
2 − p

2 )k

(1 + ω p
2)k(1 + ω2 p

2 )k

≡ (−1)
p−1
2 · Γ(p+1

2 )Γ(p
2 )Γ(1 + ω p

2)Γ(1 + ω2 p
2)

Γ(1
2 )Γ(1

2 − ω p
2 )Γ(1

2 − ω2 p
2)

·

p−1
2

∑

k=0

(1
2)k(1

2)k

k!2
(mod p3).

However, we need only be concerned with the above equation (mod p2). Employing Proposition
3.3 (3) and (5) produces

p−1
2

∑

k=0

(1
2 − p

2 )k(
1
2 − p

2 )k

(1 + ω p
2 )k(1 + ω2 p

2 )k

≡ (−1)
p−1
2 · 21−p(p − 1)! · Γ(1 + ω p

2)Γ(1 + ω2 p
2)

Γ(1
2 − ω p

2)Γ(1
2 − ω2 p

2 )
·

p−1
2

∑

k=0

(1
2)k(

1
2 )k

k!2
(mod p2).

From Lemma 4.1, we have
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p−1
2

∑

k=0

(1
2 − p

2 )k(
1
2 − p

2 )k

(1 + ω p
2)k(1 + ω2 p

2 )k

≡ (−1)
p−1
2 · 21−p(p − 1)! · 22p−2

Π
p−1
2

k=1 ((2k − 1)2 + 3p2)

·

p−1
2

∑

k=0

(1
2)k(

1
2 )k

k!2
(mod p2)

≡ (−1)
p−1
2 · 2p−1(p − 1)!

Π
p−1
2

k=1 ((2k − 1)2)

·

p−1
2

∑

k=0

(1
2)k(

1
2 )k

k!2
(mod p2)

≡ (−1)
p−1
2 · 22p−2 ·

(

p − 1
p−1
2

)−1

·

p−1
2

∑

k=0

(1
2)k(

1
2 )k

k!2
(mod p2)

≡

p−1
2

∑

k=0

(1
2)k(

1
2 )k

k!2
(mod p2),

where the last line follows from Morley’s result Theorem 3.1.
We now return to equation (5.1) and see

p−1
2

∑

k=0

(4k + 1)

(−1
2

k

)3

≡ p ·

p−1
2

∑

k=0

(1
2 − p

2)k(
1
2 − p

2 )k

(1 + ω p
2 )k(1 + ω2 p

2)k
(mod p3)

≡ p ·

p−1
2

∑

k=0

(1
2 )k(

1
2)k

k!2
(mod p3) ≡ p · φp(−1) (mod p3)

where the last congruence follows from Theorem 1.1.
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