Math 484.1.  April 19, 2006 .   Midterm 3.  
5 problems, 10 pts each. Name______________


 Solve matrix games:
1.
1
2
3
4
5
3
3
4
5
4
5
4*'
6
4
5
5
1
4
3
2
4
1
2
1
3
*' saddle point.

2.
1
2
3
4
5
3
1
4
5
4
3
1
2
3
1
5
1
4
3
2
4
1
2
1
3
By domination, we get

c1
c2
r1
1
2
r4
5
1
Row player's optimal strategy is (4r1+r4)/5 = [0.8,  0,  0,  0.2, 0]T. Column player's optimal strategy is (c1+4c2)/5 =[0.2, 0.8, 0, 0, 0].
The value of game is 9/5 = 1.8.

3.
2
0
2
-2
2
-2
0
5
4
2
-5
0
The first column goes by domination. Then we get a symmetric game, so its value  is 0.
An optimal strategy for the column player is [0, 5, 2, 2]/9,. Its transpose without the first entry is an optimal strategy for   the row player .

4.
3
3
0
1
4
1
0*'
1
0
2
3
3
2
2
0
1
2
2
0
1
2
0
0
1
*' saddle point.

5.
1
4
3
2
5
4
3
5
4
3
1
4
3
1
5
4
5
2
5
6
3
5
6
4

The columns 4-8 go by domination. Optimal strategies: [9, 6, 7]/22T and  [[3, 7, 1, 0, 0, 0 , 0,0]/11.
The values of game is 34/11.