Math 486.  Febr. 4, 2010.  Midterm 1.                                                                                                                        
5 problems, 15 pts each.                      Name_______Dr.V_______                         
 m1 .....   /75.  total    ................./.....
       
Write your name on the class list and on every page you submit.   Return this page.

Find an equilibrium in pure strategies and the corresponding payoff. In Problems 1 and 2, the bet is $1.

1. Restricted Nim. Last move wins. Players alternate and can take 1,2,4, or 5 stones in a move from a pile. Initial position: 2 piles, 100 and 200 stones.

 

Solution. First we do one pile
    

stones

0

1

2

3

4

5

6

7

8

9

10

11

take

L

1

2

L

1 or 4

2 or 5

L

1 or 4

2 or 5

L

1 or 4

2 or 5

        
Period is 3. A winning strategy:  keep the number of stones divisible by 3. You loose (L)  against a perfect player if you start with the number divisible by 3.

Now we consider two piles. Still we have period 3 for W and L in both directions. 

A winning strategy: keep the numbers of stones congruent each other modulo 3. It suffices to take 1 or 2 stones in a move to win.

In particular, in the position (100,200) take either 1 or 4 from the pile of 200 or 2 or 5 from pile of 100.

 

 

2. Blackjack. Player (P) has hard 17. Dealer (D)  shows 10.  Cards remaining including D's face-down are 4, 4,4.7, 7,7.

 

 see pdf by H.K.


                                 D's face down card is 7  D stands at 17  payoff is $0.

                                                 /       

                                            0.5

                                             /

                 P stands at 17  - --0.5-- ->  D's face down card is 4  D drws at 14  D wins. P's payoff is -$1.

          stand    / expected payoff is -$0.5.

P   -$0.15  

         draws \

  -$0.15       P draws at 17 --- 0.5--->  P gets 7. The payoff is -$1.                       D gets 7 and stands at 17. $1..              D gets 7 and ties. $0. 

                                      \ 0.5                                                                                                        / 0.6                                           | 0.75

                  $0.7        P gets 4. P has 21. P cannot do better. P stands at 21.D draws.  ---0.4--> D gets 4. D draws at 14. $0.25.

                                                                                                                                                                                                        | 0.25

                                                                                                                                                         D gets 4  again and stands at 18. $1


The value of game is -$0.15. Optimal solution is to draw.

 

3. 2 player game in normal form.

7, 1

4,0

-1, 3

0,0

3, 3

-3,4

5,-1

5,0

-2, 5

1, 4

3,1

0,0

0, 5

4,-1

-2, 4

6, 0

0, 3

1,1

1,1

5,0

0, 3

6,0

3,3

3,3


Solution.

7*, 1

4,0

-1, 3

0,0

3*, 3

-3,4*

5,-1

5*,0

-2, 5*

1, 4

3*,1

0,0

0, 5*

4,-1

-2, 4

6*, 0

0, 3

1,1

1,1

5*,0

0*, 3*

6*,0

3*,3*

3*,3*

There are 3 equilibria. All in the last row,  in columns 3,5,6. They are positions with two *.


4. Extensive form, 3 players, A B, C.


                              initial position  B
                              
                     /                                         \
                 /                                                 \
            A                                                      B
        /          \                                               /        \
      B             C                                         B           C
    /      \      /          \                                 /      \     /         \
 1,2,3   0,-1,0    -1,-2,1                -1,0,1    2,-1,0      0,0,2

Solution. Double line  indicate a strategy profiles which are equilibria.

                              initial position  B     
                    (1,2,3) the payoff at both equilibria
                    / /                                         \
                 //                                                 \
            A    (1,2,3)                                       B   (0,0,2) or (-1,0,1)
       / /          \                                             /  /      \ \
 B  (1,2,3)      C   (-1,-2,1)         (-1,0,1)    B       C   (0,0,2)
   /      \      /         \ \                             /   /      \     /      \  \
 1,2,3   0,-1,0    -1,-2,1                -1,0,1    2,-1,0      0,0,2



5.  Game with 3 players, A, B, C. in normal form.
strategy                     payoff
A  B  C               A   B   C
1   1  1               0  -1    1
1  1  2                1   1  -2
1  2  1                1   0   0
1  2  2                 0    0   1
2  1  1                 0  -1    1
2  1  2                1   1  -2
2  2  1                1   0  -1
2  2  2                 -1   1   0
3  1  1                 0 -1    1
3  1  2                 -1   1  -2
3  2  1                1  -1   0
3  2  2                 -1   0   0

 

Solution.

strategy                     payoff
A  B  C               A   B   C
1   1  1               0  -1    1
1  1  2                1   1  -2
1  2  1                1   0   0
1  2  2                 0    0   1
2  1  1                 0  -1    1
2  1  2                1   1  -2
2  2  1                1   0  -1
2  2  2                 -1   1   0
3  1  1                 0* -1*   1*  equilibrium
3  1  2                 -1   1  -2
3  2  1               1*  -1*  0*  equilibrium
3  2  2                 -1   0   0

 

*maximal payoff for this player if the other players do not change.