Find the equilibria in pure strategies, the Pareto optimal solutions
in pure strategies,
the characteristic function, the Nash bargaining solution, and
the Shapley values.
1. Players: the row player Ann; the column player Bob.
0, 1 | 1, 0 | 0, 0 | 1, 1 |
1, 1 | 1, 3 | 2, 0 | 2, 2 |
0, 3 | 0, 0 | 1, 3 | 3, 2 |
1, 0 | 0, 0 | 0, 0 | 1, 0 |
Solution. Two equilibria:
0, 1* | 1*, 0 | 0, 0 | 1, 1* |
1*, 1 | 1*, 3* | 2*, 0 | 2, 2 |
0, 3* | 0, 0 | 1, 3* | 3*, 2 |
1*, 0* | 0, 0* | 0, 0* | 1, 0* |
Two Pareto optimal payoffs: (3, 2) and (1,3).
v(Ann) = 1 = the value of the matrix game
0 | 1 | 0 | 1 |
1 | 1*' | 2 | 2 |
0 | 0 | 1 | 3 |
1 | 0 | 0 | 1 |
v(Bob) = 0 = the value of the matrix game
1 | 1 | 3 | 0*' |
0 | 3 | 0 | 0*' |
0 | 0 | 3* | 0*' |
1 | 2 | 2 | 0*' |
v(empty)=0, v(Ann,Bob) = 5.
Nash bargaining: (x-1)y -> max , x >= 1, y >= 0,
(x,y) is a mixture of (3, 2) and (1,3).,
x+2y=7, (x-1)+2y=6, x-1=2y=3; x=4, y=1.5
optimal solution on line,; x=3, y=2 the arbitration pair.
Ann Bob
Ann Bob
1 4
Bob Ann
5 0
------------------
Shapley values 3 2
2. Players: A, B, C
strategies
payoffs
1 1
1
0 1 2
1 1
2
1 0 1
1 2
1
2 3 4
1 2
2
1 2 3
2 1
1
0 0 1
2 1
2
1 1 1
2 2
1
2 3 3
2 2
2
2 3 2
3 1
1
0 0 0
3 1
2
0 0 0
3 2
1
1 1 1
3 2
2
2 4 3
Solution.
Three equilibria, two Pareto optimal:
strategies
payoffs
1 1
1
0 1 2
1 1
2
1 0 1
1 2
1
2* 3* 4* equilibrium Pareto optimal
1 2
2
1 2 3
2 1
1
0 0 1
2 1
2
1 1 1
2 2
1
2* 3* 3*equilibrium
2 2
2
2 3 2
3 1
1
0 0 0
3 1
2
0 0 0
3 2
1
1 1 1
3 2
2
2* 4* 3* equilibrium Pareto optimal
v(empty)=0, v(A,B,C)) = 9.
v(A) = 0 = the value of the matrix game
0*' | 1 | 2 | 1 |
0 | 1 | 2 | 2 |
0 | 0 | 1 | 2 |
1 | 0 | 0 | 1 | 0 | 0 |
3 | 2 | 3 | 3 | 1*' | 4 |
2 | 4 | 1 | 3 | 0*' | 1 |
1 | 3 | 1 | 2 | 0 | 3 |
1 | 1 |
5 | 3 |
0 | 2 |
5*' | 5 |
0 | 0 |
2 | 6 |
2*' | 6 |
2 | 4 |
1 | 5 |
2 | 4 |
0 | 2 |
0 | 5 |
B$C vs A | c2 | c3 | (5c2+c3)/6 | |
3 | 1 | 0 | ||
1 | 2 | 0 | ||
r21 | 7 | 6 | 2 | 16/3 |
r22 | 5 | 5 | 7 | 16/3 |
(r21+2r22)/3 | 16/3 | 16/3 | 16/3*' |
order contribution
A B C
ABC 0 5 4
ACB 0 7 2
BAC 4 1 4
BCA 11/3 1 13/3
CAB 2 7 0
CBA 11/3 16/3 0
---------------
20/9 79/18 43/18
Shapley values.
Nash bargaining:
x(y-1)z -> max, x >=0 , y>= 1, z > = 0, (x,y,z) is a mixture
of (2,3,4) and (2,4,3), so x = 2.
y+z=7, (y-1)+z=6, y-1=z=3, (x,y,z)= (2,4, 3) the arbitration
triple.