1. Restricted Nim. Last move wins. Players can take 2,6, or 7 stones
in a move. Initial position: 1 pile, 10000 stones.
Solution.
Pile size | 13n | 13n+1 | 13n+2 | 13n+3 (e.g..10K) | 13n+4 | 13n+5 |
W/L | L | L | W | W | L | L |
take | 2 or 6 | 2 or 7 |
13n+6 | 13n+7 | 13n+8 | 13n+9 | 13n+10 | 13n+11 | 13n+12 |
W | W | W | L | W | W | W |
2,6 | 2,6, or 7 | 7 | 6 | 2,6, or 7 | 7 |
2. Blackjack. Player has 10 and 6. Dealer shows 10. Cards
left: 5, 5, 6, 7.,7,7.
Solution.
P has 16, P's position, initial position. -$11/30
P draws
P stands at 16
P has 16, D
has 10, chance move. -$11/30
P has 16, D has 10, chance move .-$2/5= -$0.40
/
\
/ |
\
1/3
2/3
1/3 1/6
1/2
/
\
/
|
\
P stands at 21 (5,6,7,7,7) $.9
P is over -$1
D (15) $1/5 D (16) $1/5
D(17) -$1 for P
D draws at 10, chance move
D draws , chance move
1/5
1/5
3/5
3/5 2/5 2/5
3/5
D (15) $3/4 D (16) $3/4
D (17) $1
D (22) $1 D (21)
-$1 D is over, $1
3/4
1/4 1/4 3/4
D (22) $1 D (21) $0 D (23) $1
Answer: Player (P) draws once, P's expected payoff
is -$11/30.
3. 2 player game in normal form.
-7, 1 | 4,0 | -1, 3 | 0,0 | 3, 3 |
5,-1 | 5,0 | 0, 5 | 1, 5 | 6,1 |
0, 5 | 4,-1 | -2, 4 | 6, 0 | 0, 3 |
7,2 | 5,0 | 0, 3 | 6,0 | 4,6 |
-7, 1 | 4,0 | -1, 3* | 0,0 | 3, 3* |
5,-1 | 5*,0 | 0*, 5* | 1, 5* | 6*,1 |
0, 5* | 4,-1 | -2, 4 | 6*, 0 | 0, 3 |
7*,2 | 5*,0 | 0*, 3 | 6*,0 | 4,6* |
4. Extensive form, 3 players, A B, C.
initial position
chance move
/
\
0.2
0.8
/
\
A
B
/
\
/ \
B
C
B C
/ \
/ \
/ \ /
\
1,2,3 0,-1,0 -1,-2,-3
-1,0,1 1,1,0 0,0,2
Solution.
initial position 1, 1.2, 0.6
chance move
/
\
0.2
0.8
/
\
A 1,2,3
B 1.1.0
//
\
/ / \
B 1,2,3
C 0,-1,0
1,1,0 B
C 0,0,2
// \
// \
/ \ \ /
\\
1,2,3 0,-1,0 -1,-2,-3
-1,0,1 1,1,0 0,0,2
5. Game with 3 players, A, B, C. in normal form.
strategy
payoff
A B C
A B C
1 1 1
0 -1 1
1 1 2
1 1 -2
1 2 1
1 0 0
1 2 2
-1 0 0
2 1 1
0 -1 1
2 1 2
1 1 -2
2 2 1
1 0 1
2 2 2
-1 0 0
3 1 1
0 -1 1
3 1 2
-1 1 -2
3 2 1
1 0 0
3 2 2
-1 0 1
Solution.
strategy
payoff
A B C
A B C
1 1 1
0* -1 1*
1 1 2
1* 1* -2
1 2 1
1* 0* 0*
1 2 2
-1* 0 0*
2 1 1
0* -1 1*
2 1 2
1* 1* -2
2 2 1
1* 0* 1*
2 2 2
-1* 0 0
3 1 1
0* -1 1*
3 1 2
-1 1* -2
3 2 1
1* 0* 0
3 2 2
-1* 0 1*
There are two equilibria.