Math 486  Game Theory Miderm 3  Dec.3, 2009. 
Name______________________________________

Find the equilibria in pure strategies, the Pareto optimal solutions in pure strategies,
the characteristic function,  the Nash bargaining solution, and the Shapley values.
 

1 (30 pts).   Players: the row player Ann; the column player Bob.

0, 1

1, 0

0, 0

1, 1

1, 1

1, 3

2, 4

2, 2

0, 3

0, 0

1, 3

3, 2

1, 0

0, 0

0, 0

1, 4

(payoffs for  Ann and Bob)

Solution.   One equilibrium in pure joint strategies, (row 2, column 3):

0, 1*

1*, 0

0, 0

1, 1

1*, 1

1*, 3

2*, 4*

2, 2

0, 3*

0, 0

1, 3*

3*, 2

1*, 0

0, 0

0, 0

1, 4*

 

Two Pareto optimal pure payoffs: (3, 2) and (2,4).

v(Ann) = 1 = the value of the matrix game  

0

1*

0

1

1

1*'

2*

2

0

0

1

3*

1

0

0

1

v(Bob) = 1 = the value of the matrix game (where Bob is the row player)

1*

1

3

0'

0’

3

0'

0'

0’

4*

3

0’

1*’

2

2

4*

 

v(empty)=0, v(Ann,Bob) = 6.

Nash bargaining:   (u-1)(v-1)  -> max , u >= 1, v >= 1,    (u, v) is a mixture of  (3, 2) and (2,4).,
2u + v =8,   2(u – 1) + (v – 1) =5,  2(u-1)= v - 1=2.5;  u=2.25, v=3.5  optimal solution= Nash solution=   the arbitration pair.

This arbitration pair is a mixture of given payoffs: (2.25, 3.5) =(3/4)(2, 4) + (1/4)(3.2).

                          Ann   Bob
Ann Bob              1       5
Bob Ann             5       1
------------------
Shapley values   3     3
 
 

2 (45 pts).   Players: A, B, C
strategies             payoffs
1  1  1                      0  1  2
1  1  2                      1  0  1
1  2  1                      2  3  3
1  2  2                      1  2  3
2  1  1                      0  0  1
2  1  2                      1  1  1
2  2  1                      2  3  3
2  2  2                      2  3  2
3  1  1                      0  0  0
3  1  2                      0  0  0
3  2  1                      1  1  1
3  2  2                      2  4 0

Solution.
Two equilibria, two Pareto optimal triples:
strategies             payoffs
1  1  1                      0  1  2
1  1  2                      1  0  1
1  2  1                      2*  3*  3*  equilibrium  Pareto optimal
1  2  2                      1  2  3
2  1  1                      0  0  1
2  1  2                      1  1  1
2  2  1                      2*  3*  3*equilibrium Pareto optimal
2  2  2                      2  3  2
3  1  1                      0  0  0
3  1  2                      0  0  0
3  2  1                      1  1  1
3  2  2                      2  4 0     Pareto optimal

v(empty)=0, v(A,B,C)) = 8.


v(A) = 0 = the value of the matrix game

0*'

1

2

1

0

1

2

2

0

0

1

2

v(B) = 1 = the value of the matrix game

1

0

0

1

0

0

3

2

3

3

1*'

4

v(C) = 0 = the value of the matrix game

2

3

1

3

0*'

1

1

3

1

2

0

0

v(A,B) = 5= the value of the matrix game

1

1

5

3

0

2

5*'

5

0

0

2

6

v(A,C) = 2= the value of the matrix game

2*'

5

2

4

1

5

2

4

0

2

0

2

v(B,C) = 4 = the value of the matrix game

B&C vs A

c1

c2

c3

r11

3

1

0

r12

1

2

0

r21

6

6

2

r22

5

5

4*'

order         contribution
                 A   B   C
ABC          0   5   3
ACB          0   6   2
BAC          4   1  3
BCA          4   1   3
CAB          2   6   0
CBA          4   4   0
---------------
              7/3  23/6   11/6     Shapley values. The mixed Pareto optimal payoffs = mixtures of  (2,4,0) and (2,3,3). >Nash solution: the optimal solution of

a= 2, b >= 1 = v(B), c >= 0=v(C), (b-1)c -> max, (b,c) a mixture of (4,0) and (3,3).

3b+c = 12, 3(b-1)+c= 9, 3(b-1) = c = 4.5,  b=2.5, c = 4.5. This optimal solution on the line 3b+c = 12 is outside the interval of Pareto optimal pairs. The closest point on the interval is (3,3).

So the Nash solution is (2,3,3).