Math 484.1  Ocober 4, 2007   Name:_________Vaserstein___________

Midterm 1,  5 problems, 15 points each.  Return this page.

 

 

x

y 

z

 1. Solve for y, z

0

2

1

=u

1

0

1

=v

 

Solution. Pivot:

x

y 

z

 

0

2

1

=u

1

0

1*

=v

-->

x

y 

v

 1. Solve for y, z

-1

2*

1

=u

-1

0

1

=z

-->

x

u 

v

 1. Solve for y, z

1/2

1/2

-1/2

=y

-1

0

1

=z




2. x - y 3 -> min,

 x2 2y 3 = 1.


Solution. Solve the equation for
y :
y 3 =(1-  x2 )/2.
Plug this  into the objective function:

x  - (1-  x2 )/2 =   ( (x+1)2 -2)/2   -> min.

Now it is clear that  min = -1 at  x = -1, y = 0 .

 

3.

x

y

1

3. Solve for x, y

1

-1

2

1

-x

2x

>=  3

<= 2

-2

1

x

- > min


Solution. It is given that  2y >= 3, x+y <= 2. The objective function, -x + y -> min.

We take the difference the given constraints and obtain that   -x+y >= 1.

Now it is clear that  min = 1 at  x =  1/2, y =3/2 .



4. Solve the linear programs given by the following standard tableaux:

 

a

b

c

1

Problem 4a

1

0

-1

1

=d

-1

0

1

-1

->min

Solution. The tableau is feasible with a-column bad, so LP is unbounded.


a

b

c

1

Problem 4b

-1

-2

-1

-1

=d

1

0

1

0

->min

Solution. The d-row is bad, so LP is infeasible.


a

b

c

1

Problem 4c

1

0

-1

3

=d

2

0

1

-1

->min

Solution. The tableau is optimal, so min = -1 at  a=b=c=0, d=3.


5. Find all logical implications between the following 5  constraints on  x, y:

 

(a)   x2 = y2, (b) x = y=   1, (c)  x >= y , (d) x + y = 2, (e) y > 0.

Solution. (b) implies (a),(c),(d),(e).