Math484.2  September 29,2011  Name:__________Dr.V._______________________________

Midterm1,  5 problems, 15 points each.  Return this page with your name on both sides.

 

 1. Solve for x, y   where a is a given number:

a2x - y= a2,

ax +ay = 1.


Solution. A row addition operation gives

a2x - y= a2,

(a + a3 )x = 1 +a3.

If a  ≠ 0 ,then  x = (1 +a3 )/(a +a3 )   and

y = (x - 1)a2 =  a(1 - a)/(1+a2).

If  a = 0 , then  there are no solutions.


 

  2. x + y 2 ->  max,

 x2 +  y 2 = 10; x and y integers.

 

Solution There are 8 feasible solutions: (x, y) = (±1, ±3), (±3, ±1).

max= 10 at  x = 1 y = ±3  (two optimal solutions).


3, 4. Solve the linear programs given by the following tableaux with all decision variables xi  > 0:

 

   x1   

x2   

x3

 

Problem 3 

 

 

-1   

-2
   

=- x4 

 

 

1

-1   

->  min    

 

Solution. The standard tableau is

 

x1

x2

x3

1

Problem 3

-1

0

1

2

= x4

1

0

1

-1

-> min

 It is optimal so  min = -1 at   x1  =x2  =  x3  = 0,  x4 = 2.


   x1   

x2   

-x3

 

Problem 4 

 

 

-1   

2
   

= x4 

 

 

 

-1   

->  min    

 

Solution. The standard tableau is

x1

x2

x3

1

Problem 4

1

0

1

2

= x4

1

0

-1

1

-> min

It is feasible, and  the  x3-column is bad, so LP is unbounded.


5.Find all logical implications between the following 5 constraints on  x, y:

(a)   x4= y4, (b) 0 >   -2, (c) 0=  0, (d) x = -y, (e) x=y=0.


Solution.

  (e)   (d)     (a)  (b)       (c) .