Math 484.1  September 29, 2011  Name:_________Dr.V.________________________________

Midterm 1,  5 problems, 15 points each.  Return this page with your name on both sides.

 

 1. Solve for x and y where a is a given number:

a2x + y= a2,

ax +ay = 1.

 

Solution. A row addition operation gives

a2x + y= a2,

(a - a3 )x = 1 - a3.

If a  ≠ 0 , ±1, then  x = (1 - a3 )/(a - a3 )=  (1+ a +a2 )/(a + a2 ) and

y = (1-x)a2 =  -a/(1+a).

If  a = 0 or -1, then  there are no solutions.

If a = 1, then y = 1 - x (x arbitrary).


  2. 4x + y 2 -> min,

 x2 +  y 2 = 10; x and y integers.


Solution There are 8 feasible solutions: (x, y) = (±1, ±3), (±3, ±1).

min =- -11 at  x = -3, y = ±1 (two optimal solutions).

 

3, 4. Solve the linear programs given by the following tableaux with all decision variables xi ≥ 0:

 

x1

x2

x3

-1

Problem 3

-1

0

-1

2

= x4

1

0

-1

-1

-> min

 

Solution. The standard tableau is

x1

x2

x3

1

Problem 3

-1

0

-1

-2

= x4

1

0

-1

1

-> min

 The  x4-row is bad, so LP is feasible.




x1

x2

-x3

1

Problem 4

1

0

1

-2

=- x4

1

0

-1

-1

-> min

 

Solution. . The standard tableau is

x1

x2

x3

1

Problem 4

-1

0

1

2

= x4

1

0

1

-1

-> min

 It is optimal so  min = -1 at   x1  =x2  =  x3  = 0,  x4 = 2.




5. Find all logical implications between the following 5 constraints on  x, y:

 

(a)   x2 = y2, (b) 0 <   -2, (c) 0 < 1, (d) x = -y, (e) x=y=0.


Solution.

(b)   (e)   (d)     (a)    (c) .