Midterm1, 5 problems, 15 points each. Return this page with your name on both sides.

1.) 1. Solve for x where a is a given number:

$$a(a-1)(a+2)x = a^2 - 1$$
.

Solution:

If
$$a \neq 0$$
, $a \neq 1$, $a \neq -2$, then $x = \frac{a+1}{a(a+2)}$

If a = 0, then 0 = -1 so there are no solutions.

If a = -2, then 0 = 3 so there are no solutions.

If a = 1, then 0 = 0 so every x is a solution.

2.)
$$2.4x - y^2 -> \max$$
, $x^4 + y^2 = 1$.

Solution:

$$max = 4$$
when $x = 1$ and $y = 0$

3.) 3, 4. Solve the linear programs given by the following tableaux with all decision variables $x_i \ge 0$:

X ₁	X ₂	X ₃	1	Problem 3
1	0	-1	-2	=- X ₄
1	0	-1	-1	-> min

Solution:

The x_3 column is a bad column. The LP is unbounded. (min = - ∞)

X ₁	<i>X</i> ₂	-X ₃	1	Problem 4
1	0	-1	2	$=\chi_4$
1	0	-1	-1	-> min

Solution:

The LP is optimal.
$$x_1 = x_2 = x_3 = 0$$

min = -1, $x_4 = 2$

5.) Find all logical implications between the following 5 constraints on x, y:

(a)
$$x^4 = y^2$$
, (b) $0 > -2$, (c) $0 > 0$, (d) $x = y$, (e) $x = y = 0$.

Solution:

$$c \rightarrow a, b, d, e$$

$$e \rightarrow a, d$$