2. yz -> min, |y-1| + |z+ 3|
<= 5.
Solution. The feasible region ia a diamond which can be defined by 4 linear constraints.
The vertices are : y = 1 ,z = 2; y = 1, z=-8; y = 6, z = -3; y = -4, z= -3.
Answer: min = -20.25 at y = -z = 4.5.
3. Write LP in standard and canonical forms:
f= x+ 2y -> max, 1 <= x
<= 5, y <= 0.
Solution. Set u = - y >= 0, v= x -1 >= 0. w = 5 -x >= 0.
Canonical form: -f = -x +2u -> min, -x <= -1, x <= 5; x,u >= 0
Standard form: -f = -x +2u -> min, -x +v = -1, x + w= 5; x,u, v, w >= 0
Smaller canonical form: -f = -v+2u -1 -> min, v <= 4; u,v >= 0.
Smaller standard form: -f = -v+2u -1 -> min, v +w= 4; u,v ,w >= 0.
4. Solve for x,y:
2 | x | 2 | y | |
x | 1 | y | 1 | = x |
1 | 3 | -x | 0 | = 3 |
5. Pivot:
x | y | u | 3 | |
4 | 5 | 2* | x | = y |
0 | 2 | 0 | 0 | = x |
x | y | y | 3 | |
-2 | -5/2 | 1/2 | -x/2 | = u |
0 | 2 | 0 | 0 | = x |