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ON SUMS OF THREE INTEGRAL CUBES

W CoNN AND L. N VASERSTEIN

ABSTRACT Using computers, we found new representations of natural numbers
t < 1000 as sums of three integral cubes. In particular, we found the first repre-
sentations for ¢ = 39, 84,556,870, and 960. We also found the first three primitive
representations for ¢ = 80 and the first representation for ¢ = 2 which does not belong
to a known polynomial family.

In 1955, at Mordell’s suggestion, Miller and Woollett [5] investigated the integral

solutions of the equation

(1) BB =t
with
2) 1<t <100, |2] < Jy| < Je] < 3200

using the EDSAC computer at Cambridge University. They found 447 primitive
(i.e. with GCD(z,y,2) = 1) solutions of (1) in the region (2).

Reduction modulo 9 shows that (1) has no integral solutions with { = +4mod 9.
For all other ¢t no obstructions to solving (1) are known. Solutions for all other ¢ in

the interval 1 < t < 100 were found except for
(3) t = 30,33,39,42,52,74, 75,84, 87

For ¢t = 12,16,44,48,51, and 66, only one primitive solution per t was found,

e.g.,

12 = -11% 4+ 10%° 4+ 7°, 16 = 1626 — 1609° — 511°,

51 = —796% + 659> + 6023, 66 =4%4+1% 413

Typeset by AaS-TEX



For t = 0, it had been known that all integer solutions of (1) come (up to
permutation of z,y,z) from the polynomial solution u® — u® + 0% = 0. For ¢t =

1 and 2, the following polynomial solutions of (1) had been known

(4) (9u*)® — (9u* — 3u)® — (9u® - 1) =1,

(5) (6u® 4+ 1)* — (6u® — 1)° — (6u?)® = 2.

The identity (4) accounts for 9 of the 23 integral solutions of (1) in the region
(2) found in [5], and the identity (5) accounts for all 9 solutions. Using (4) and (5)
one derives infinitely many integral solutions of (1) in the case when ¢ = k* or 2k3
with an integer k

It 1s well-known (S. Ryley, 1825 [1, Ch. XXV, p.726], see also [4] ) that the
Diophantine equation (1) has infinitely many rational solutions for any rational ¢
So ‘solution’ will mean ‘integral solution’, and z,y, z,t, k below are integers.

Mordell [6, p.139] pointed out that he knew no answer to the following question.
are there other integer ¢ for which (1) ‘has an infinity of integer solutions z,y, 2’ It
is also unknown whether (1) has infinitely many primitive solutions when 2k%, k #
0,+1 On the other hand, when ¢ is a cube, (1) has infinitely many ‘trivial’ solutions
with 2 + y,z + 2z, ory + z = 0. Moreover, 1t is known [1], [8], [9] that there
are nfinitely many primitive nontrivial solutions of (1) as well as infinitely many
polynomial solutions [3] No polynomial solutions are known for ¢ # 3,2k {8],
(10]

Among queries posed in [5], were the questions whether (1) has a solution with
t from the list (3) and whether (1) has a solution with ¢ = 2, not given by (5).

AN

In 1964, the solutions of (1) with

(6) t not a cube, 1 < ¢ < 1000, |y| < |z| < 65536
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were searched for using I. B. M. STRETCH and MANIAC II computers [2]. One

of the ‘excluded’ targets in (2) was represented as a sum of three cubes. Namely,

87 = 42713 — 4126% — 19723,

Also, the first primitive solution for t = 96 was found in [2]-

96 = —15250% + 13139°% + 108532

This left ¢ = 24 and 80 the only values of ¢ in the interval 1 <t < 100 for which
only ‘derived’ (i.e., not primitive) solutions of (1) were known.

The conclusion of [2] was that their results made it unlikely that every integer
= +4(mod 9) was the sum of 3 integral cubes. Moreover, in the opinion of the
authors of [2], it was rather unlikely that all ¢ in (3) would turn out to be expressible
as sums of three cubes. All solutions of (1) with ¢ = 2 found in [5] and [2] belong
to the parametric family (5).

A search for solutions of (1) in the region |z| < |y| < 100,000 with some ¢ in (3)
gave nothing [9].

Nevertheless, we were not discouraged by these results and carried out further
computations, using Mathematica at Sun 4 and NeXT workstations, as well as

other software and hardware. We found a solution of (1) with ¢ = 39, namely,

39 = 159380% + 134476% + 1173673,

a solution with ¢ = 84, namely,

84 = 41639611°  41531726° — 8241191°,

three primitive solutions with ¢ = 80, namely,

80 = 279817% + 262880° + 155257% = —112969° + 103532% + 692413



and a solution with ¢t = 2 which is not included in (5), namely,

9 = —3528875% + 3480205 + 12149283

Here is the list of all ¢ in the interval 1 < ¢t < 100 for which no primitive solutions

of (1) are known.

(7) ¢ = 24,30,33,42, 52, 74, 75.

Here 1s the list of ¢ in the interval 1 <t < 100 for which only one primitive solution

of (1) with |z| > |y| > |#| is known.

(8) t =12,16,39, 51,84, 87, 96.

The solutions were all given above.

In Table 1, for all  in the interval 0 < ¢t < 100,¢ # +4(mod 9),t # k3, k3, for
which at least two primitive solutions of (1) with |z| > |y| > |z| are known, except
t = 80 (for which the 3 known solutions are given above), we give the number MW
of primitive solutions listed in [5], the number GLS of new solutions found by the
authors of [2], the number CV of new solutions we found, and the total number

N = MW 4 GLS 4 CV of solutions known. Also listed in Table 1 are the two

solutions with maximal |z|
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Table 1. The number of known integral solutions of (1) and some solutions

MW [gLs| cv | N Jz,y,2 Z,Y, %
3 2 0 0 2 [ 1,1,1 -5, 4, 4
6 4 1 1 6 -60355, 60248, 10529 -2593669, 2441147, 1426148
7 3 0 3 6 -6150123, 6137561, 1124657 -6575582, 5547575, 1374870
9 2 1 1 4 -11329, 11305, 2097 ~-71521992, 71463217, 9659294
10 4 0 2 6 301471, -294038, -125509 208197006, -298124987, -26780787
11 4 1 1 6 6628, -5973, -4274 501483, -501026, -70100)
15 3 0 3 6 1562828, -1562761, -78886 -31430185, 31278578, 7646792
17 5 2 2 9 330502, -296407, -215872 763403, -677757, -511173
18 4 3 5 12 29667623, -29533949, -7056540 3107173878,-3107114991,-118545570
19 | 4 0 3 7 | 549195,-498390, -347186 4527187, -4086798, -2905548
20 7 1 [ 14 3645939, -3431087, -2006066 9348001, -9161277, -3633722
} 21 4 1 3 8 -106358, 106333, 9466 12124, -109831, -7808
| 25 3 1 0 4 -15964, 15942, 2561 -862850, 714469, 652408
26 4 1 1 6 -63154, 62709, 17421 139643, -132288, -74169
28 5 1 2 8 500752, -440941, -341519 443280029, -443049953, -51369794
29 4 3 5 12 -1639004, 1604581, 647628 -59565612, 59429101, 11317786
| 34 8 2 3 13 804494, -802695, -151615 2385818, -2383221, -353833
| 35 3 7 2 12 256817, -231035, -166387 8564556, -8549692, -1483557
I 36 4 2 5 11 21554787, -21184007, -7978924 -46498000, 46496077, 2319087
| a7 3 0 2 5 -155924, 154165, 50246 -5148254, 5139542, 884317
as 2 1 0 3 -27 25, 16 12205, -10940, 7983
43 5 3 5 13 1668803, -1647658, -558738 -14191393, 14154155, 2820585
i 1 0 3 4 -264878, 264623, 37709 1482566, -1482369, -109107
| 45 3 1 4 8 1136437, -940266, -860158 -1674692, 1342485, 1315652
46 3 1 3 7 | -558258, 495645, 373777 598825, -597584, -110035
&1 | a 0 3 7 | 213705, 209650, 81688 -392291, 391641, 66913
48 1 1 0 2 | 31, -28, -23 3991, -3950, -1247
51 1 0 1 2 -796, 659, 602 886475, -885556, -129352
53 5 (4 [ 11 1924978, -1922482, -302611 160529381, -160267130, -27252892
549 3 2 0 5 4459, -3613, -3462 12437, -11375, -7674
55 11 3 4 18 -38424926, 38198927, 9983872 452034271, -451993693, -29190299
56 3 0 6 9 -11151164, 11095150, 2749740 27129289, -27128828, -1005921
57 7 3 4 14 1256119, -1220489, -547277 -103473047, 103393096, 13690564
{ &0 2 1 1 4 -8233, 7061, 5906 -1146811 1036031, 734480
&1 2 0 0 2 5,-4,0 -966, 845, 668
62 w 3 6 16 30326285, -30255846, -5787903 -38123721, 38047638, 6917951
63 5 3 4 12 -868399, 867133, 141945 10555335, -10477547, -2955229
65 5 3 0 8 -25248, 24193, 12460 47425, -43629, -28691
66 1 0 1 2 4,1,0 1619125, -1619036, -88787
69 4 4] 2 6 -1213102, 1209029, 261692 -18037816, 18036296, 1140509
70 5 1 2 8 -2858077 2827923, 900896 3322634, -3317619, -549415
R 3 16 | -6681513, 6502032, 2860160 -8609744, 8588678, 1671887
72 4 v} Q 2 -10,7,9 28, -27, -13
73 4 3 1 8 56729, -50552, -37652 705811 -703771, -144863
78 2 0 g 2 -55, 53, 26 78, ©123, -2080, -829
79 3 0 [ 3 74, -66, -49 711, -705, 196
81 3 0 3 6 -294596, 286361 127746 355419224, -355399661, -19498665
52 2 1 2 5 -390539, 344669, 265048 167797 -152%31, -104700
83 1 3 6 22 -901895, 962193, 439801 6817294, -6815464, -487293
83 3 3 3 8 1156223, -1156023, -82908 -46266712, 46225115, 6438381
RO | 3 0 4 7 -12534879, 12526638, 1571636 26743320, -26743052, -831561
9 T 5 10 29 -66708371, 66702677, 4235582 541378689, -541364578, -23150303
21 5 2 6 13 -222677, 209968, 121298 -6817294, 6816464, 487293
2 8 3 5 16 | -7439189, 7362352, 2328537 -19488167 19261291, 6345444
3 4.2 0 0 9 |7 -5 -5 253, -248, -08
a7 3 1 7 16 -11656809, 11656805, 117701 -98258218, 98076953, 17369628
ag [ 4 o 1 5 2391, -2101, -1638 -301423, 293034, 130521
g | g |9 11 29 3916074, -36729256, -2190200 6007855, -5802483, -3154129
10 | 3 §en 2 5 T68040, 688903, 501307 1141317774, -1141296093, -43920623
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Except for the representations of 87 and 96 quoted above, solutions of (1) are not
explicitly listed in [2], but their number is given for each ¢, and we found exactly
so many solutions in the region (6) to account for these numbers. So the results
of [2] are confirmed by our computations for ¢ < 100. The method of [2] allowed
the authors to obtain solutions for larger ¢ in the same sweep, without spending
substantial additional time. In [2], the numbers of solutions of (1) are given for all
t in the interval 1 <t < 999 which are not cubes.

We searched several regions including the regions

9) =z 2yl = ||, [z + y| < 49,]2| < 1,000,000,

1<t< 1,000

(10) |z| = |y| = |2],50 < |z + y| < 200, |z| < 20,000||z + y|,

1<t <1,000;

(11) |z| = |y| = |2],201 < |z +y| < 1,999, |z| < 20,000(z + y|,

1 <t <100,¢ not a cube;

(12)  [z| =2 |yl = |2],2,000 < |z + y| < 75,000, [2] < 2,998z + y|,

1 <t <100,t not a cube;

(13) z| = |y| = |2|,75,001 < |z + y| < 446,000, |z] < 298|z + y|,

1 <t <100,¢ not a cube.

There are 520 primitive solutions of (1) with |z| > |y| > |z[,1 < ¢t < 100,¢ not a
cube, in the regions (9)-(13), excluding exactly 56 solutions coming from (5) with
v = 0,1, ,55. This includes 341 solutions known previously (from [5] and [2]).
Of these 520 solutions, 246 are in the region (9), 48 are in the region (10), 76 are

in (11), 111 are in {12), and 39 are 1n (13).
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The 12 maximal ratio —z/(z + y) obtained rounded to the closest integers are

20 425; 19.4583; 11,921, 9,934, 6,118; 2,159; 2,027; 2,026; 1,641; 1,317; 1,206; 1,177

x|

Le maximal values of |z|, |y|, ||, s among our solutions are
3,107,173,978; 3,107,114,991, 119,545,570; 440,389

respectively. Figure 1 below plots the points

(log(lz + y| + 1), log(|z| + 1) — log(J + 4| + 1))

for our 520 solutions and shows the upper bounds for the regions (9)—(13) of search.

Computers also produced many solutions with ¢ = 1,8,27,64 and with ¢ > 100,
too many to show here. We give here only representations for numbers for which it
was unknown whether they were sums of three integral cubes (¢t = 556,870) or no

primifive representation was known (¢t = 960):
556 = —1379083" + 1379046° + 59543°,
870 = —420598° + 420449° + 42917°,
960 = —1753258° + 1753229% + 64427°
Several methods and programs were used. We will describe the methods which

were most efficient in regions (9), (10), and (11)~(13). Set s = =2 + y. Then (1)

takes the form
(14) s(z? —xy +y?) 4+ 22 =14,

hence z® =t (mod s). Thus, the condition 1 < ¢ < 100, allows us to dismiss many
congruence classes of z modulo s (for large s).

Next we rewrite (1) as (—~y +s8)* +y* =t 2% or

(15) s(y? —ys) =t — 2> —5°,

3

hence t — 2° = s® (mod 3s). This condition imposes further restrictions on =z.

N2

Finally we use that 4(y*> yeo)=(2y s)? s? and rewrite (15) as

(16) v? = 3s(4t 42 — %) with v = 3s{2y — s) = —3s* (mod 6s).
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In our first method, used in the regions (9) and (10), we fixed s first (1 < s <
200). Then we ran z from —s to -1,000,000 (resp., to 20,000s) to obtan solutions
in region (9) (resp., (10)). For each s we compute v as the integer closest to
(~122° - 35%)(05) If v = —3s? (mod 6s) and |v? +122% — 3s%| < 1,000, we obtain
a solution. This program misses some solutions with small |z|, |y, |z|, but they can
be easily found by other methods (e.g., looking up [5]).

Our second program, used for s > 201, also fixes s first. Then it tries all integers
c in the interval —s < ¢ < 2s and selects such that ¢® = #(mod s) with || < 100.
We fix the target ¢ at this point and dismiss all ¢ which do not satisfy the condition
t—c® = s* (mod 3s). To save running time, we dismiss all targets s which are cubes
(there are too many solutions for them ) as well as any ¢t = 4 ( mod 9) (for such t,
there are no solutions). Now we run z along the arithmetic progression z = ¢ —3sw,
and proceed as in the end of the previous paragraph. The intervals for we used w
were: 1 < w < 2,667 when 201 < s € 2,000;1 < w < 1,000 when 2,001 < s <
75,000;1 < w < 1,000 when 75,001 < s < 446,000. The condition |y| > |z] is
satisfied automatically for w > 2. Allowing w = 1, we obtained many solutions for
the second (or even third) time with a different value of s (with z,y,z permuted

and signs changed). In runs with Mathematica we usually included w = 0, which

resulted in many solutions of (1) in Gauss integers. Here are a few examples:

3 = —(15982 + 4010:)° (15982 — 4010i)* + 18779°
= (144 (11— =02+ +(2 P 17
30 = (95 + 2147)° + (95 214:2)% + 200°

= (95 + 514)® + (95 — 5144)* 4 530°

If we had increased the set of possible targets ¢ , the second method would have
required more computational time, so we did not use it to solve (1) with ¢ > 100.
The reason we decreased the upper bound for w for runs with larger s was to save

running time. We believe that we missed some solutions as a result of this.
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Figure 1. The points (log(s + 1),log(|z + 1|) — log(s + 1)) for 520 primitive

solutions (z,y,z) withz > |y| > |z| and s =z + y
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