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Optimization of ergodic averages

T: X — X a continuous transformation of a compact metric space.

¢: X — R a continuous function, S,¢ = Zjn:_ol ¢ o T/ = Birkhoff
sum

Definition

The ergodic maximum of ¢ wrt T is:

1
B(@1T):= lim —max(5.¢)(x),

n— p xeX

where lim = inf exists by subadditivity (Fekete lemma).

First question: do there exist points x whose orbits are “optimal”
in the sense that

S,0)(x
5 g

n—00
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Alternative formulation: maximizing measures

M1 = (compact convex) set of T-invariant probability measures.

Proposition (< Jean-Pierre Conze, Yves Guivarc'h, ~ 1993)

B(@|T)= sup J ¢ du.
X

HEMT

There is always at least one ergodic measure attaining the sup.

Definition
Maximizing measures are those that attain the sup above.

Problem

How to concretely find maximizing measures (and in particular
compute 3)? What are their typical properties?
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Typically unique and periodic maximization

Theorem (Thierry Bousch, 2000)

If T is the doubling map on the circle R/Z and

®.,b(x) = acos2Tx + bsin2Tx, then there exists an open set
G C R? of full Lebesgue measure such that if (a, b) € G, then
the maximizing measure for ¢, p is unique and supported on a
periodic orbit.

\,

Theorem (Gonzalo Contreras, 2016)

If T is an expanding map (e.g. a one-sided shift) and @ is a
generic Lipschitz function, then the maximizing measure is unique
and supported on a periodic orbit.

.

Theorem (Rui Gao, Weixiao Shen, Ruiqin Zhang, preprint 2025)

If T is an analytic expanding circle map and ¢ is a typical (in a
probabilistic sense) C" function, r =1,2,...,00, W, then the
maximizing measure is unique and supported on a periodic orbit.
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Contreras Shen
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Maximizing measures tend to have special structure

Theorem (Rui Gao, Weixiao Shen, 2024)

If T is an analytic expanding circle map and ¢ is a real analytic
function which is not a coboundary, then all maximizing measures
have zero entropy.

In the classical example T(x) =2x mod 1,

@(x) = acos2Tx + bsin 27, Bousch actually showed that (unless
@ = 0), the maximizing measure is always unique Sturmian® — the
measures of lowest possible complexity.

The recent work of Gao—Shen—Zhang relies on identifying a
“Sturmian-like” structure.

Lidentify [0, 1] with {0, 1}N using binary expansions
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Sturmian measures

Definition (Marston Morse, Gustav Hedlund, 1940)

Let U be a shift-invariant measure on {0, 1}N. We say that u is
Sturmian if, for any n > 1, at most n+ 1 cylinders of “length” n
have positive measure.

The measure supported on the orbit of (0011)* is not Sturmian,
since it intersects the four cylinders [00], [01], [10], [11].

v

A Sturmian measure [ is completely determined by the parameter
Y = U([1]). The support of U = Uy consists of the itineraries of
the irrational rotation x — x + Y mod 1 with respect to the
partition Iy =[Y, 1), h = [0, Y). This shift-invariant set is uniquely
ergodic.
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Subadditive ergodic optimization

T: X — X still a continuous transformation of a metric space.

¢,: X = R a subadditive sequence of continuous functions.

Proposition (many authors)

1 n(x
lim —sup @n(x) = sup J lim #-(x) du(x)
X

n—=% n yex HEM T [=>E9 n

Kingman

Similarly to the above, let B((¢,) | T) denote the sup above, and
call maximizing measure any U that attains the sup above.
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Optimization of Lyapunov exponents

One of our favorite subadditive sequences:
$n(x) = log IA(T"x) -« AX)Il

where A: X — Mat(d x d). (Recall Matheus' talk.)

The corresponding ergodic maximum B((¢,) | T) is the maximal
Lyapunov exponent of the linear cocycle (T, A).

B = sup A1 (T, A ).
HEM
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Joint spectral radius

T = shift on m symbols acting on Q = {1,..., m}N.
A: Q — Mat(d x d) such that A(w) = Aq,.

Then (T, A) is called the one-step coccyle induced by the tuple of
matrices (A1, ..., Am).

If B is the corresponding maximal Lyapunov exponent, then ef is
traditionally called the joint spectral radius (JSR).

Definition (Gian-Carlo Rota, W. Gilbert Strang, 1960)

The joint spectral radius (JSR) of a tuple of matrices
A:(Al,...,Am) is

1
max [|A;, «-- Aqll=.

= lim
n—00 il

JSR(A)

..... in
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Typical periodic maximization?

Conjecture (Mohsen Maesumi, 2008)

For Lebesgue-almost every m-tuple of d X d matrices, the JSR is
attained by a shift-invariant measure periodic orbit for the shift.

It would be natural to expect uniqueness... However, this is false:

Theorem (J.B., Piotr Laskawiec, 2024)

There exists a nonempty (but tiny) open set U of pairs of 2 x 2
matrices such that if (A1, A2) € U, then the JSR is attained along
two different periodic orbits, namely the orbits of the points

(121122)°  and (221121)%.
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Pairs of 2 X 2 matrices

Theorem (Piotr Laskawiec, 2025)

There is a “big chunk” of the space of pairs of 2 x 2 matrices
admitting a maximizing measure supported on a “simple”
maximizing measure.

A\

Theorem (J.B., Cagri Sert, 20267)

Maesumi conjecture holds for pairs of SL(2, R) matrices in
“coparallel configuration”:

Furthermore, maximizing measures are always unique and
Sturmian.

.
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Laskawiec
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Isometries and ergodic optimization

(H, d) = a noncompact metric space, o € H an arbitrary basepoint.

Definition
The escape speed of an isometry f: H— H is
d(f"(o), o
ES(f) := lim M
n—00 n

Definition

The joint escape speed of F = (fi, ..., fm) = a tuple of isometries
of (H,d) is

1
JES(F) = lim — max d(fj, o---0f;(0),0).
n—0 piy,...,ip
= the maximal value of a subaddditive ergodic optimization
problem associated to a one-step cocycle of isometries...

\,
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Optimizing Euclidean isometries

The group of isometries of the hyperbolic plane is isomorphic to
the group

SL*(2,R) = {A€Mat(2x 2); det A==£1}.

If Maesumi’s conjecture is true for this group, then for typical
tuples F = (f1, ..., fm) (with respect to Haar™), the optimal ways
of escaping to infinity should consists of periodic sequences.

By Furstenberg's theorem, random products typically escape to
infinity with positive (but suboptimal) speed.
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Optimizing Euclidean isometries

Assume that our isometries act 7 = (f1, ..., f) act on Euclidean
space RY.

Under mild (and typical) conditions on F, random orbits

fi o -+- 0o f; (o) satisfy a central limit theorem and follow a
Brownian motion (in an appropriate limit): Tutubalin (1967) etc.
In particular, the escape speed of Bernoulli measure is zero.

Proposition (Emmanuel Breuillard, Koji Fujiwara, 2021)

The joint escape speed JES(F) is positive if and only if the f;'s
have no common fixed point.
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Breakdown of typically periodic optimization

Consider the simplest case of a pair of orientation-preserving
isometries f;, f, of R2 = C. Impose the following (typical)
hypotheses:

@ f; is not a translation:
fi(z) =e%(z—¢)+¢, oa;j¢2nZ.

@ No common fixed points: ¢; # ¢, thus ensuring
JES(f1, f) > 0.

@ a7, O, 2T are rationally independent (i.e. LI over Q).
Then no maximizing measure can be supported on a periodic

orbit! .
fi oo f(2) = )z 1 p
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Main theorem

Theorem (J.B., Pablo Lessa, 20257)

For a positive measure set of parameters
(a1, O3), the maximizing measure is unique
and Sturmian. This set is necessarily
nowwhere dense.

The proof involves reducing a commutative ergodic optimization
problem over a (specific) partially hyperbolic skew-product.
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First reduction: horizontal escape

Instead of maximizing 4/x2 + y2, we can maximize x instead.

1
JES(fy, ) = lim = max (£, 0+-£,(0), (1,0)).
Sl NI VIR Jn
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Second reduction: PH skew-product

fi(z) = ez 4 by, (z) = 2z 4 by.

R
Q= {1,2}N, T=——.
{ } 217

T-OxT—-0xT, T(w, 0) = (o(w), 60+ ay,).
F:QxT—>R,  F(w,6):=Re(e®hy,,).

JES(f, L) =PB(F| T):= sup f Fdv.
QxT

VEMT

A simplification: WLOG, by = by =1, so

F(w, ) =cosB.
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Summary so far

We're now reduced to the following modified problem:

Consider the IFS acting on the unit circle S':
Ri(z) = %z, Ry(z) = e'%2 7 (a1, Oy, 2T rationally indep.)

Given an initial point zg € S* (say, zp = 1), we want to choose
Wo, W1, ... € {1,2}N so to maximize the average value of

Re(R"Jn—l ©:--0 R(A)O (Zo))

What is the optimal strategy?
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Instant gratification

Greedy strategy: Given z, € S!,
choose w, € {1,2} that maxi-
mizes Re(Ry,(z,)) is maximal.

Instant gratification

Suppose (a1, &) € [—, T]? are such that
010, <0, |ai|+|oz] <7 (“bowtie” region).

Then orbits (z,) of the greedy strategy remains in the arc

[ = [_ |a1|;|a2|, |a1|;|a2|] C(—m maTast,
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The greedy strategy is Sturmian

Recall T(w, 0) = (0(w), 6+ au,)-

Under the conditions above (“bowtie”), there exists a T-invariant
measure V supported on the strip Q x /, of the form

V = Uy X Lebj, where 1y is the Sturmian measure on

o

Q = {1, 2}N with a proportion of 1's equal to Y = ————.
lo| + oo

[DRAW FIGURE]
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Main theorem, again

Theorem (B., Lessa)

Let G C Bowtie C [—T, TT]? be the subset of parameters (01, O2)

for which the greedy measure is uniquely maximizing for the escape
speed. Then:

@ G has positive Lebesgue measure.

e G is nowhere dense (i.e., int(G) =2.)
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When greed is good

Let (a1, O2) in the bowtie region be

such that
|as|
Y=—""-—¢Q,
|as| + |a|
[oe] 1 -1
lor | + o] < C( —)
; n?|sin(nmy)|

(where C > 0 is an explicit constant).

Then (a1, a2) € G (greedy is uniquely
maximal). In particular, Leb(G) > 0.

The RHS is strictly positive for Lebesgue a.e. ¥y € [0, 1] (being
Diophantine with exponent T < 1 suffices).
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Delaying gratification is sometimes a good idea

If 7y is super Liouville (very well approximable by rationals), then
the greedy strategy is suboptimal.

[GO TO BOARD]
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What do we gain with delaying gratification?

If vy €0, 1] is “sufficiently Diophantine”, then for every piecewise
C? function ¢: R/Z — R, the cohomological equation

p—c=yoRy—y¢
(where ¢ = f ¢ dLeb) admits a C° solution §: R/Z — R.

Exercise on Fourier series. ]

We can estimate 2||{/|| co, which is an upper bound for the relative
payoff of “delayed gratification.

.
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Directions for future research

@ Develop a theory of ergodic optimization beyond uniform
hyperbolicity — applying at least to the partially hyperbolic
skew products above.

@ Provide a more complete picture of the optimization of escape
speed for composition of isometries.
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L

Parabéns Alexander pelo seu excelente trabalho!
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