Optimization of Lyapunov Exponents

Jairo Bochi (PUC-Chile)

ICM 2018, Rio de Janeiro

Part 1

Commutative ergodic optimization: Birkhoff averages

References: Surveys by O. Jenkinson.

- Ergodic Optimization, Discrete and Cont. Dyn. Sys. A, vol. 15 (2006), pp. 197–224.
- Ergodic Optimization in Dynamical Systems,
 Ergodic Theory Dynam. Systems (2018; online)

Apology / Disclaimer: I won't discuss relations with <u>Lagrangian Mechanics</u>, nor <u>Thermodynamical</u> Formalism.

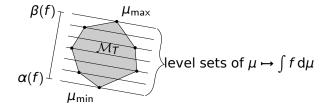
General setting for the whole talk

- *X* = compact metric space
- $T: X \to X$ continuous map
- $\mathcal{M}_T := \text{set of } T\text{-invariant Borel probability measures}$ (compact convex)
- $\mathcal{M}_{\tau}^{\text{erg}} := \text{subset of ergodic measures} = \text{ext}(\mathcal{M}_{T}).$

Ergodic optimization of Birkhoff averages

Given a continuous function $f: X \to \mathbb{R}$ ("potential"),

$$\left\{\int f\,\mathrm{d}\mu\,;\,\mu\in\mathcal{M}_T\right\}=:\left[\alpha(f),\beta(f)\right]$$

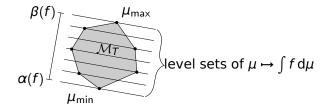


Part 1

0000000000

Given a continuous function $f: X \to \mathbb{R}$ ("potential"),

$$\left\{ \int f \,\mathrm{d}\mu \; ; \mu \in \mathcal{M}_T \right\} =: [\alpha(f), \beta(f)]$$



 $\mu \in \mathcal{M}_T$ s.t. $\int f d\mu = \beta(f)$ is called a **maximizing** measure.

Note: **Ergodic** maximizing measures always exist. In particular, uniqueness ⇒ ergodicity.

Birkhoff sum $f^{(n)} := f + f \circ T + \cdots + f \circ T^{n-1}$

$$\beta(f) = \sup_{x \in X} \limsup_{n \to \infty} \frac{f^{(n)}(x)}{n}$$
$$= \lim_{n \to \infty} \sup_{x \in X} \frac{f^{(n)}(x)}{n}$$

Ergodic optimization of Birkhoff averages

Meta-Problem

To understand maximizing measures.

Maximizing measures: Generic uniqueness

Theorem (Conze–Guivarch, Jenkinson, ...)

Let \mathcal{F} be any "reasonable" space \mathcal{F} of continuous functions.

For generic f in \mathcal{F} , the maximizing measure is **unique**.

Maximizing measures: Generic uniqueness

Theorem (Conze–Guivarch, Jenkinson, ...)

Let \mathcal{F} be any "reasonable" space \mathcal{F} of continuous functions.

For generic f in \mathcal{F} , the maximizing measure is **unique**.

<u>"Reasonable"</u> space: a topological vector space \mathcal{F} continuously and densely embedded in $C^0(X)$.

<u>Generic</u> property: a property that holds on a dense G_{δ} subset (of a Baire space).

The inverse problem

Theorem (Jenkinson)

Given $\mu \in \mathcal{M}_T^{\text{erg}}$, there exists $f \in C^0(X)$ such that μ is the unique maximizing measure for f.

The inverse problem

Theorem (Jenkinson)

Given $\mu \in \mathcal{M}_T^{\text{erg}}$, there exists $f \in C^0(X)$ such that μ is the unique maximizing measure for f.

If μ has finite support then f can be taken C^{∞} .

For a general μ , how regular f can be taken? Not much...

Maximizing sets

Part 1

Assume the following **nice setting**:

- $T: X \to X$ is "hyperbolic" (e.g. uniformly expanding, Anosov);
- $f: X \to \mathbb{R}$ is "regular" (at least Hölder).

Assume the following **nice setting**:

- $T: X \to X$ is "**hyperbolic**" (e.g. uniformly expanding, Anosov);
- $f: X \to \mathbb{R}$ is "**regular**" (at least Hölder).

Theorem (Subordination principle)

In this nice setting, there is a **maximizing set**: a T-invariant compact set $K \subseteq X$ such that

 μ is maximizing \Leftrightarrow supp $\mu \subseteq K$

Maximizing sets

Assume the following **nice setting**:

- $T: X \to X$ is "**hyperbolic**" (e.g. uniformly expanding, Anosov);
- $f: X \to \mathbb{R}$ is "**regular**" (at least Hölder).

Theorem (Subordination principle)

In this nice setting, there is a **maximizing set**: a T-invariant compact set $K \subseteq X$ such that

$$\mu$$
 is maximizing \Leftrightarrow supp $\mu \subseteq K$

• It is **false** if f is only C^0 (by the previous theorem)

Maximizing sets

Assume the following **nice setting**:

- $T: X \to X$ is "hyperbolic" (e.g. uniformly expanding, Anosov);
- $f: X \to \mathbb{R}$ is "regular" (at least Hölder).

Theorem (Subordination principle)

In this nice setting, there is a **maximizing set**: a T-invariant compact set $K \subseteq X$ such that

 μ is maximizing \Leftrightarrow supp $\mu \subseteq K$

- It is **false** if f is only C^0 (by the previous theorem)
- It is a corollary of the Mañé Lemma (or Revelation Lemma or Nonpositive Livsic Lemma).

Several formulations: Mañé'92, Conze-Guivarc'h'93, Fathi'97, Savchenko'99, Bousch'00, Contreras-Lopes-Thieullen'01, Lopes-Thieullen'03, Pollicott-Sharp'04, Bousch'11).

Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)

Suppose $T: X \rightarrow X$ is chaotic

Then for typical

functions $f: X \to \mathbb{R}$, the regular

maximizing measure has low complexity

```
Meta-Conjecture (~ Hunt–Ott, Phys. Rev. 1996)
```

Suppose $T: X \to X$ is chaotic (unif. expanding / unif. hyperbolic /...).

Then for typical

regular functions $f: X \to \mathbb{R}$, the

maximizing measure has low complexity

```
Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)
```

Suppose $T: X \to X$ is chaotic (unif. expanding / unif. hyperbolic / . . .) .

Then for typical (topological sense / probabilistic sense) functions $f: X \to \mathbb{R}$, the regular maximizing measure has low complexity

```
Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)
```

Suppose $T: X \to X$ is chaotic (unif. expanding / unif. hyperbolic /...).

Then for typical (topological sense / probabilistic sense) regular (Hölder / . . . / analytic) functions $f: X \to \mathbb{R}$, the maximizing measure has low complexity

Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)

Suppose $T: X \to X$ is chaotic (unif. expanding / unif. hyperbolic /...).

Then for typical (topological sense / probabilistic sense) regular (Hölder / ... / analytic) functions $f: X \to \mathbb{R}$, the maximizing measure has low complexity (zero topological entropy / ... / supported on a periodic orbit).

Known results in this direction

Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)

Suppose the dynamics $T: X \to X$ is chaotic. Then for typical regular functions $f: X \to \mathbb{R}$, the maximizing measure has low complexity.

Many results (including Yuan, Hunt'99; Contreras, Lopes, Thieullen'01; Bousch'01; Morris'08; Quas, Siefken'12); the best one is:

Known results in this direction

Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)

Suppose the dynamics $T: X \to X$ is chaotic. Then for typical regular functions $f: X \to \mathbb{R}$, the maximizing measure has low complexity.

Many results (including Yuan, Hunt'99; Contreras, Lopes, Thieullen'01; Bousch'01; Morris'08; Quas, Siefken'12); the best one is:

Theorem (Contreras'16)

T unif. expanding \Rightarrow for generic Lipschitz f's (actually all f's in an open and dense subset), the maximizing measure is supported on a periodic orbit.

Known results in this direction

Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)

Suppose the dynamics $T: X \to X$ is chaotic. Then for typical regular functions $f: X \to \mathbb{R}$, the maximizing measure has low complexity.

Many results (including Yuan, Hunt'99; Contreras, Lopes, Thieullen'01; Bousch'01; Morris'08; Quas, Siefken'12); the best one is:

Theorem (Contreras'16)

T unif. expanding \Rightarrow for generic Lipschitz f's (actually all f's in an open and dense subset), the maximizing measure is supported on a periodic orbit.

Only result with a probabilistic notion of typicality (prevalence): B., Zhang'16.

A beautiful example

Conze, Guivarch'93; Hunt-Ott'96; Jenkinson'96; Bousch'00

$$T(x) = 2x \mod 2\pi$$
 on the circle $X := \mathbb{R}/2\pi\mathbb{Z}$

f =trigonometric polynomial of deg. 1

WLOG,
$$f(x) = f_{\theta}(x) = \cos(x - \theta)$$

A beautiful example

Conze, Guivarch'93; Hunt-Ott'96; Jenkinson'96; Bousch'00

 $T(x) = 2x \mod 2\pi$ on the circle $X := \mathbb{R}/2\pi\mathbb{Z}$

f = trigonometric polynomial of deg. 1

WLOG, $f(x) = f_{\theta}(x) = \cos(x - \theta)$

Theorem (Bousch'00)

For every $\theta \in [0, 2\pi]$, the function f_{θ} has a unique maximizing measure μ_{θ} , and it has zero entropy (actually, Sturmian).

A beautiful example

Conze, Guivarch'93; Hunt-Ott'96; Jenkinson'96; Bousch'00

 $T(x) = 2x \mod 2\pi$ on the circle $X := \mathbb{R}/2\pi\mathbb{Z}$

f = trigonometric polynomial of deg. 1

WLOG, $f(x) = f_{\theta}(x) = \cos(x - \theta)$

Theorem (Bousch'00)

For every $\theta \in [0, 2\pi]$, the function f_{θ} has a unique maximizing measure μ_{θ} , and it has zero entropy (actually, Sturmian).

Furthermore, for Lebesgue-a.e. θ (actually, all θ outside a set of Hausdorff dim. 0), μ_{θ} is supported on a periodic orbit.

Part 2 Non-commutative ergodic optimization: Top Lyapunov exponent

$$F: X \to \operatorname{Mat}(d \times d, \mathbb{R}) \text{ or } \operatorname{GL}(d, \mathbb{R})$$
 ("cocycle").

The Birkhoff sums are replaced by products:

$$F^{(n)}(x) := F(T^{n-1}x) \cdots F(Tx)F(x).$$

Top Lyapunov exponent:

$$\lambda_1(F, x) := \lim_{n \to \infty} \frac{1}{n} \log \|F^{(n)}(x)\|$$
 (if it exists)

For any $\mu \in \mathcal{M}_T$, the limit exists for μ -a.e. $x \in X$.

$$\lambda_1(F,\mu) \coloneqq \int \lambda_1(F,x) \, \mathrm{d}\mu(x)$$

Optimization of the top Lyapunov exponent

Quantities of interest:

$$\alpha(F) \coloneqq \inf_{\mu \in \mathcal{M}_T} \lambda_1(F, \mu)$$

$$eta(F) \coloneqq \sup_{\mu \in \mathcal{M}_T} \lambda_1(F, \mu)$$

Optimization of the top Lyapunov exponent

Quantities of interest:

$$\alpha(F) \coloneqq \inf_{\mu \in \mathcal{M}_T} \lambda_1(F, \mu)$$

$$\beta(F) \coloneqq \sup_{\mu \in \mathcal{M}_T} \lambda_1(F, \mu)$$

For "step cocycles":

- $e^{\beta(F)}$ is called **joint spectral radius** (Rota, Strang'60; Daubechies, Lagarias'92, ...)
- $e^{\alpha(F)}$ is called joint spectral subradius (Gurvits'95).

Another characterization:

$$\beta(F) = \lim_{n \to \infty} \sup_{x \in X} \frac{1}{n} \log ||F^{(n)}(x)||.$$

λ_1 -minimizing/maximizing measures?

Basic difficulty:

 $\mu \in \mathcal{M}_T \mapsto \lambda_1(F, \mu)$ is **not continuous**, in general. It is upper semi-continuous, at least.

λ_1 -minimizing/maximizing measures?

Basic difficulty:

 $\mu \in \mathcal{M}_T \mapsto \lambda_1(F, \mu)$ is **not continuous**, in general. It is **upper semi-continuous**, at least.

$$\alpha(F)\coloneqq \inf_{\mu\in\mathcal{M}_T}\lambda_1(F,\mu)$$
 \odot not necessarily attained

$$eta(F) \coloneqq \sup_{\mu \in \mathcal{M}_T} \lambda_1(F, \mu) \quad \odot \text{ always attained}$$

Step cocycle $T: \{0,1\}^{\mathbb{N}} \longleftrightarrow \text{shift}, F(x) = A_{x_0} \text{ where } A_0 = \begin{pmatrix} 2 & 0 \\ 0 & 1/8 \end{pmatrix} \text{ and } A_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$

Claim

 $\alpha(F) \coloneqq \inf_{\mu \in \mathcal{M}_T} \lambda_1(F, \mu) = -\log 2$, but the inf is not attained.

Proof.

Step cocycle $T: \{0,1\}^{\mathbb{N}} \longleftrightarrow \text{shift}, F(x) = A_{x_0} \text{ where } A_0 = \begin{pmatrix} 2 & 0 \\ 0 & 1/8 \end{pmatrix} \text{ and } A_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$

Claim

 $\alpha(F) := \inf_{\mu \in \mathcal{M}_T} \lambda_1(F, \mu) = -\log 2$, but the inf is not attained.

Proof.

$$A_1A_0^n = \begin{pmatrix} 0 & -2^{-3n} \\ 2^n & 0 \end{pmatrix}$$
 has eigenvalues $\pm 2^{-2n}i$, so

$$\boxed{\mu_n := \delta_{(0^n 1)^{\infty}}} \Rightarrow \lambda_1(F, \mu_n) = \boxed{-\frac{n}{n+1} \log 2} \searrow -\log 2.$$

So
$$\alpha(F) \le -\log 2$$
. Discontinuity: $\lambda_1(F, \lim \mu_n) \ne \lim \lambda_1(F, \mu_n)$.

On the other hand...

Step cocycle $T: \{0,1\}^{\mathbb{N}} \longleftrightarrow \text{shift}, F(x) = A_{x_0} \text{ where } A_0 = \begin{pmatrix} 2 & 0 \\ 0 & 1/8 \end{pmatrix} \text{ and } A_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$

Claim

 $\alpha(F) := \inf_{\mu \in \mathcal{M}_T} \lambda_1(F, \mu) = -\log 2$, but the inf is not attained.

Proof.

$$\lambda_1(F,\mu) \overset{(1)}{\geq} \tfrac{\lambda_1(F,\mu) + \lambda_2(F,\mu)}{2} = \int \tfrac{1}{2} \log \underbrace{|\det F(x)|}_{\geq 1/4} \, \mathrm{d}\mu(x) \overset{(2)}{\geq} - \log 2 \,.$$

So $\lfloor \alpha(F) \ge -\log 2 \rfloor$ and therefore $\lfloor \alpha(F) = -\log 2 \rfloor$. Moreover, (2) becomes "=" iff $\mu = \delta_{0^{\infty}}$, but then (1) is ">". So no μ attains $\lambda_{1}(F, \mu) = -\log 2$.

Expected panorama for λ_1 -maximization

Meta-Conjecture

Suppose T is chaotic (unif. expanding / unif. hyperbolic / ...). Then for typical (topological sense / probabilistic sense) regular (Hölder / ... / analytic) cocycles F, the λ_1 -maximizing measure has low complexity (zero topological entropy / ... / supported on a periodic orbit).

A result that fits this philosophy: B., Rams'16.

Some initial results

Similarly to the commutative **subordination** principle:

Theorem (B., Garibaldi)

Suppose T is a hyperbolic homeomorphism, and that F is a strongly fiber-bunched cocycle. Then there exists a **maximizing set**: a T-invariant compact set $K \subseteq X$ such that

 μ is λ_1 -maximizing \Leftrightarrow supp $\mu \subseteq K$

Some initial results

Similarly to the commutative **subordination principle**:

Theorem (B., Garibaldi)

Suppose T is a hyperbolic homeomorphism, and that F is a strongly fiber-bunched cocycle. Then there exists a **maximizing set**: a T-invariant compact set $K \subseteq X$ such that

$$\mu$$
 is λ_1 -maximizing \Leftrightarrow supp $\mu \subseteq K$

This is actually a corollary of a **version of Mañé Lemma for cocycles** (existence of extremal norms), which has other applications.

Related work: Morris'10, Morris'13.

Part 3 Non-commutative ergodic optimization: Full Lyapunov spectra

Extra information: Proceedings paper (ArXiv 1712.01612)

The other Lyapunov exponents

 $T: X \to X$, $F: X \to \operatorname{GL}(d, \mathbb{R})$ as before. For each $i \in \{1, 2, ..., d\}$, and $x \in X$, let

$$\lambda_i(F, x) := \lim_{n \to +\infty} \frac{1}{n} \log \mathbf{s}_i(F^{(n)}(x))$$
 (if it exists)

where $\mathbf{s}_i(\cdot) \coloneqq i$ -th biggest singular value.

For any $\mu \in \mathcal{M}_T$, these limits exist for μ -a.e. $x \in X$. If μ is **ergodic**, then $\lambda_i(F, \cdot)$ is μ -a.e. equal to some constant $\lambda_i(F, \mu)$.

Lyapunov spectrum of a cocycle

Given (T, F), the **Lyapunov vector** of $\mu \in \mathcal{M}_T^{erg}$ is:

$$\vec{\lambda}(F,\mu) := (\lambda_1(F,\mu),\ldots,\lambda_d(F,\mu))$$

The **Lyapunov spectrum** of (T, F) is:

$$L^+(F) \coloneqq \left\{ \vec{\lambda}(F, \mu) ; \mu \in \mathcal{M}_T^{\text{erg}} \right\},$$

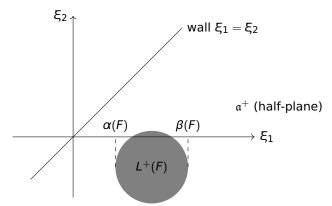
which is a subset of the **positive chamber**:

$$\mathfrak{a}^+ := \left\{ (\xi_1, \dots, \xi_d) \in \mathbb{R}^d : \xi_1 \ge \dots \ge \xi_d \right\}.$$

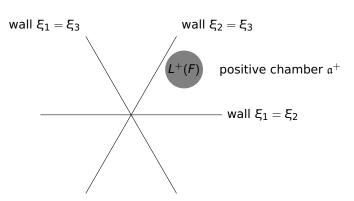
Lyapunov spectrum of a cocycle

$$L^{+}(F) := \left\{ \vec{\lambda}(F, \mu) ; \mu \in \mathcal{M}_{T}^{\text{erg}} \right\}$$

$$\subset \quad \mathfrak{a}^{+} := \left\{ (\xi_{1}, \dots, \xi_{d}) \in \mathbb{R}^{d} ; \xi_{1} \geq \dots \geq \xi_{d} \right\}.$$



$$\{(\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 ; \xi_1 + \xi_2 + \xi_3 = 0\}$$



Related: Sert'17 has a notion of "joint spectrum" (more general Lie groups); he proves large deviation results.

A nice result (for the "nice setting")

Theorem (Kalinin'11)

Suppose $T: X \to X$ is hyperbolic, and $F: X \to GL(d, \mathbb{R})$ is a Hölder-continuous cocycle. Then the Lyapunov vectors of measures supported on **periodic orbits** are dense in the Lyapunov spectra $L^+(F)$.

Part 1

Meta-Conjecture (Typical spectra; part 1)

Suppose $T: X \to X$ is hyperbolic, and $F: X \to GL(d, \mathbb{R})$ is a typical regular cocycle. Then:

Meta-Conjecture (Typical spectra; part 1)

Suppose $T: X \to X$ is hyperbolic, and $F: X \to GL(d, \mathbb{R})$ is a typical regular cocycle. Then:

• The Lyapunov spectrum $L^+(F)$ is a **convex** set.

Meta-Conjecture (Typical spectra; part 1)

Suppose $T: X \to X$ is hyperbolic, and $F: X \to GL(d, \mathbb{R})$ is a typical regular cocycle. Then:

- **1** The Lyapunov spectrum $L^+(F)$ is a **convex** set.
- 2 Its boundary is "fishy".

Meta-Conjecture (Typical spectra; part 1)

Suppose $T: X \to X$ is hyperbolic, and $F: X \to GL(d, \mathbb{R})$ is a typical regular cocycle. Then:

- The Lyapunov spectrum L+(F) is a convex set.
- Its boundary is "fishy".
- **3** Every boundary point $\vec{\xi}$ outside the walls is attained as the Lyapunov vector of a unique ergodic measure $\mu_{\vec{\epsilon}}$; furthermore, $\mu_{\vec{\epsilon}}$ has low complexity (zero topological entropy).

Meta-Conjecture (Typical spectra; part 1)

Suppose $T: X \to X$ is hyperbolic, and $F: X \to GL(d, \mathbb{R})$ is a typical regular cocycle. Then:

The Lyapunov spectrum L+(F) is a convex set.

Part 2

- Its boundary is "fishy".
- **3** Every boundary point ξ outside the walls is attained as the Lyapunov vector of a unique ergodic measure $\mu_{\vec{\epsilon}}$; furthermore, $\mu_{\vec{\epsilon}}$ has low complexity (zero topological entropy).
- Subordination property: these μ_ξ have uniquely ergodic supports.

A particular but concrete example

"Step cocycle" $T: \{0, 1\}^{\mathbb{N}} \longleftrightarrow \text{shift}, F(x) = A_{x_0} \text{ where } A_0 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } A_1 = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}. \text{ Then:}$

A particular but concrete example

"Step cocycle" $T: \{0, 1\}^{\mathbb{N}} \longleftrightarrow \text{shift}, F(x) = A_{x_0} \text{ where } A_0 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } A_1 = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}. \text{ Then:}$

- $L^+(F)$ is convex.
- Its boundary is composed of a piece of the wall $\xi_1 = \xi_2$ and a curve with a **dense** subset of corners "fishy".
- Every point in this curve is attained as the Lyapunov vector of a unique ergodic measure, which is Sturmian.

Corollary of works by Hare, Morris, Sidorov, Theys'11; Morris, Sidorov'13 (on counterexamples for the "finiteness conjecture"; see also Bousch, Mairesse'01).

The simplest case

If
$$F(x) = \begin{pmatrix} e^{f_1(x)} & 0 \\ 0 & e^{f_2(x)} \end{pmatrix}$$
 where $f_1 > f_2$ then:

• The Lyapunov vector $\mu \mapsto \vec{\lambda}(F, \mu)$ is continuous, since it equals $\int \vec{f} d\mu$ where $\vec{f} = (f_1, f_2)$.

The simplest case

If
$$F(x) = \begin{pmatrix} e^{f_1(x)} & 0 \\ 0 & e^{f_2(x)} \end{pmatrix}$$
 where $f_1 > f_2$ then:

- The Lyapunov vector $\mu \mapsto \vec{\lambda}(F, \mu)$ is continuous, since it equals $\int \vec{f} d\mu$ where $\vec{f} = (f_1, f_2)$.
- The Lyapunov spectrum $L^+(F)$ is a "rotation set"; in particular it is compact and convex, and its extremal points are attained by ergodic measures.
- $L^+(F)$ is away from the wall $\xi_1 = \xi_2$.

Part 1

If
$$F(x) = \begin{pmatrix} e^{f_1(x)} & 0 \\ 0 & e^{f_2(x)} \end{pmatrix}$$
 where $f_1 > f_2$ then:

- The Lyapunov vector $\mu \mapsto \vec{\lambda}(F, \mu)$ is continuous, since it equals $\int \vec{f} d\mu$ where $\vec{f} = (f_1, f_2)$.
- The Lyapunov spectrum $L^+(F)$ is a "rotation set"; in particular it is compact and convex, and its extremal points are attained by ergodic measures.
- $L^+(F)$ is away from the wall $\xi_1 = \xi_2$.

Commutativity regained: Essentially the same happens if the cocycle admits a dominated splitting into one-dimensional bundles – which is an open property.

Part 1

A step back: vectorial ergodic optimization

The **rotation set** of a continuous $\vec{f}: X \to \mathbb{R}^d$ is:

$$R(\vec{f}) := \left\{ \int \vec{f} \, \mathrm{d}\mu \; ; \, \mu \in \mathcal{M}_T \right\}$$

compact and convex; an affine projection of \mathcal{M}_T in \mathbb{R}^d .

A step back: vectorial ergodic optimization

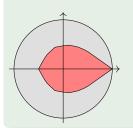
The **rotation set** of a continuous $\vec{f}: X \to \mathbb{R}^d$ is:

$$R(\vec{f}) := \left\{ \int \vec{f} \, \mathrm{d}\mu \; ; \, \mu \in \mathcal{M}_T \right\}$$

compact and convex; an affine projection of $\mathcal{M}_{\mathcal{T}}$ in \mathbb{R}^d .

Example (The fish: Jenkinson'96, Bousch'00)

$$T(x) = 2x \mod 2\pi$$
, $\vec{f}(x) = (\cos x, \sin x)$.



- Fishy boundary: dense subset of corners.
- Each corner comes from a periodic orbit.
- Boundary points come from low-complexity measures (Sturmian).

Note: No Mañé Lemma for vectorial ergodic optimization (B.,

Delecroix) – see Proceedings paper.

Back to cocycles: Dominated splittings

Suppose the cocycle $F: X \to GL(d, \mathbb{R})$ admits an **invariant** splitting:

$$\mathbb{R}^d_{x} = \underbrace{V_{x}}_{\dim = i} \oplus \underbrace{W_{x}}_{\dim = d - i} \qquad F(x)(V_{x}) = V_{Tx}, \ F(x)(V_{x}) = W_{Tx}.$$

The splitting is **dominated** if $\exists c \in (0, 1)$ s.t. (changing the norm if necessary)

$$||F(x)w|| < c||F(x)v|| \quad \forall x, \ \forall unit vectors \ v \in V_x, \ w \in W_x.$$

(\Leftrightarrow uniform exponential separation of <u>singular</u> values \mathbf{s}_i , \mathbf{s}_{i+1} for the products $F^{(n)}(x)$: B., Gourmelon'09)

Finest dominated splitting

Every cocycle admits a **finest dominated splitting** $\mathbb{R}^d = V_1 \oplus V_2 \oplus \cdots \oplus V_k$ (maybe **trivial** (k = 1)).

If the splitting is **simple** (k = d) then we recover commutativity.

Possible strategy to obtain convexity of $L^+(F)$ **:** use subsystems with simple dominated splitting?

Domination vs. Lyapunov exponents

If a cocycle admits a dominated splitting with dominating bundle of dim. i then the Lyapunov spectrum $L^+(F)$ is away from the wall $\xi_i = \xi_{i+1}$.

The converse is false

Domination vs. Lyapunov exponents

If a cocycle admits a dominated splitting with dominating bundle of dim. i then the Lyapunov spectrum $L^+(F)$ is **away from the wall** $\xi_i = \xi_{i+1}$.

 Υ The converse is false . . . but maybe true for typical cocycles? (known counterexamples are too delicate)

Meta-Conjecture (Typical Lyapunov spectra – continued)

Suppose $T: X \to X$ is hyperbolic, and $F: X \to GL(d, \mathbb{R})$ is a typical regular cocycle. Then:

- 1 The Lyapunov spectrum $L^+(F)$ is a **convex** set.
- 2 Its boundary is "fishy" (dense subset of corners away from walls).
- **3** Every boundary point $\vec{\xi}$ outside the walls is attained as the Lyapunov vector of a unique ergodic measure $\mu_{\vec{\xi}}$; furthermore, $h(\mu_{\vec{\xi}}, T) = 0$.
- 4 Subordination property: these μ_{ξ} have uniquely ergodic supports.
- **5** $L^+(F)$ touches the wall $\xi_i = \xi_{i+1}$ iff there is no dominated splitting with dominating bundle of dim. i.

Extra convexity properties of $L^+(F)$?

Let's add still another item:

Meta-Conjecture (Typical Lyapunov spectra – continued)

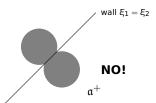
Suppose $T: X \to X$ is hyperbolic, and $F: X \to GL(d, \mathbb{R})$ is a typical regular cocycle. Then:

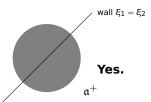
. . .

1 There exists a (larger) **convex** set $M^+(F) \subset \mathbb{R}^d$ (**Morse set**) such that $M^+(F) \cap \mathfrak{a}^+ = L^+(F)$ and $M^+(F)$ is invariant by reflections across the walls it touches.

Remark: The terminology **Morse set** comes from Control Theory: Colonius, Kliemann'96, '02 – chain transitivity on projective and flag bundles.

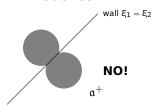
1 There exists a (larger) **convex** set $M^+(F)$ ⊂ \mathbb{R}^d (**Morse set**) such that $M^+(F) \cap \mathfrak{a}^+ = L^+(F)$ and $M^+(F)$ is invariant by reflections across the walls it touches.

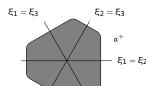


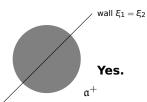


Extra convexity properties of $L^+(F)$?

1 There exists a (larger) **convex** set $M^+(F) \subset \mathbb{R}^d$ (**Morse set**) such that $M^+(F) \cap \mathfrak{a}^+ = L^+(F)$ and $M^+(F)$ is invariant by reflections across the walls it touches.







 $\xi_1 = \xi_2$ (*F* in SL(3, \mathbb{R}); no dominations)

Rationale for (6) extra convexity

Philosophy: Lack of domination (of "index" i) should allow us to mix (make convex combinations) of Lyapunov exponents λ_i and λ_{i+1} .

Example (seen before)

The step cocycle induced by matrices $\begin{pmatrix} 2 & 0 \\ 0 & 1/8 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Rationale for (6) extra convexity

Philosophy: Lack of domination (of "index" i) should allow us to mix (make convex combinations) of Lyapunov exponents λ_i and λ_{i+1} .

Example (seen before)

The step cocycle induced by matrices $\begin{pmatrix} 2 & 0 \\ 0 & 1/8 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Some implementations of this "philosophy": B.'01; B., Viana'05; B., Bonatti'12 (perturbative). Gorodetski, Ilyashenko, Kleptsyn, Nalsky'05; B., Bonatti, Díaz'14, '16 (non-perturbative).

On the other hand, if a conjecture by B., Fayad'06 is true then (6) is false for <u>probabilistic</u>-typical <u>step</u> cocycles in dim. 2. (But <u>step</u> cocycles don't look very typical...)