Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness
•0				0000000

initeness

New trends

Finiteness of matrix equilibrium states

Jairo Bochi (Pontifical Catholic University of Chile)

Webminar New Trends in Lyapunov exponents July 7, 2020

https://cemapre.iseg.ulisboa.pt/events/event.php?id=197

This talk is based on the paper:

J. B., Ian D. Morris. Equilibrium states of generalised singular value potentials and applications to affine iterated function systems. *Geometric and Functional Analysis*, 28 (2018), no. 4, pp. 995–1028.

http://dx.doi.org/10.1007/s00039-018-0447-x

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
	•0000000				

Subadditive thermodynamical formalism

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
oo	o●ooooooo	000000	00000	0000000000000	
Suba	dditive press	sure			

Given:

- a compact metric space X;
- a continuous map $T: X \rightarrow X$;
- a sequence $\mathcal{F} = (f_n)_{n \ge 1}$ of continuous functions $f_n : X \rightarrow [-\infty, +\infty)$ which is **subadditive**:

$$f_{n+m} \leq f_n \circ T^m + f_m \, .$$

Define the (topological) pressure:

$$P(\mathcal{F}) := \lim_{\varepsilon \to 0} \limsup_{\substack{n \to \infty \\ n \to \infty}} \sup_{\substack{E \subseteq X \\ (n,\varepsilon) \text{-separated}}} \frac{1}{n} \log \sum_{x \in E} e^{f_n(x)}.$$

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	
	0000000				

Subadditive ergodic theorem

 $\mathcal{M}_T(X) \coloneqq \{T\text{-invariant probability measures}\}.$

A Borel set $B \subseteq X$ has **full probability** if

$$\mu(B) = 1, \quad \forall \mu \in \mathcal{M}_T(X).$$

New trends

Kingman'68: If $\mathcal{F} = (f_n)$ is a (say, continuous) subadd. seq. then the **asymptotic average**

$$\overline{f}(x) \coloneqq \lim_{n \to \infty} \frac{f_n(x)}{n}$$
 exists for all x in a full probability set.

Furthermore, for all $\mu \in \mathcal{M}_T$,

$$\int \bar{f} d\mu = \lim_{\substack{n \to \infty \\ \inf}} \int \frac{f_n}{n} d\mu.$$

Subadditive variational principle

Subadditive variational principle: If \overline{f} is the asymptotic avg. of the subadd. seq. \mathcal{F} , then:

$$P(\mathcal{F}) = \sup_{\mu \in \mathcal{M}_{\mathcal{T}}(X)} \left(h_{\mu}(T) + \int \bar{f} d\mu \right) \quad \text{(if } h_{\text{top}}(T) < \infty \text{)}.$$

(Cao–Feng–Huang'08; related work by Falconer'88, Barreira'96, Kaënmäki'04, Mummert'06.)

An **equilibrium state** is an invariant measure μ that attains the sup.

As in the classical (additive) setting, (ergodic) equilibrium states exist provided the metric entropy is upper-semicontinuous (e.g. T expansive or C^{∞}).

An easy remark: If (f_n) and (g_n) are two subadditive sequences, then we can construct a third one by:

$$h_n(x) \coloneqq \max\left\{f_n(x), g_n(x)\right\}.$$

Asymptotic average:

$$ar{h}(x) = \max{igl\{ar{f}(x),ar{g}(x)igr\}}.$$

If μ is ergodic, then

$$\int ar{h} \, d\mu = \max \left\{ \int ar{f} \, d\mu, \ \int ar{g} \, d\mu
ight\} \, .$$

So:

{erg. equil. states for (h_n) } ⊆ {erg. equil. states for (f_n) }∪ {erg. equil. states for (g_n) }.

Opening	Subadd. therm. form.	Lyapunov exp. 000000	Dim. 00000	Finiteness 0000000000000	New trends
Local	lly constant o	case			

Consider:

- $(X, T) = (\Sigma_N, \sigma)$ = one-sided full shift on the alphabet $\{1, \ldots, N\}$.
- a subadditive sequence $\mathcal{F} = (f_n)$ s.t. each f_n is constant on the cylinders of depth n.

Equivalently, for every word w

$$f_n|_{[w]} \equiv \log \Phi(w),$$

where $\Phi: \Sigma_N^* \rightarrow [0, +\infty)$ is a **submultiplicative potential**, i.e., a function on the set Σ_N^* of words s.t.

$$\forall w, v \in \Sigma_N^*, \quad \Phi(wv) \le \Phi(w) \Phi(v).$$

Rem.: Even if the subadd. seq. (f_n) (for the shift) is not loc. const., we can still define a submult. potential $\Phi(w) := \exp \sup_{[w]} f_{|w|}$.

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
	000000000				

In the locally constant situation $f_n|_{[w]} = \log \Phi(w)$, the pressure has a simpler expression:

$$P(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{\substack{w \in \Sigma_N^* \\ |w| = n}} \Phi(w)$$

That is,

$$\sum_{\substack{w \in \Sigma_N^* \\ |w|=n}} \Phi(w) = e^{nP(\Phi) + o(n)}$$

Semi- and Quasi-multiplicativity

Subadd, therm, form,

00000000000

Opening

Let $\Phi: \Sigma_N^* \rightarrow [0, +\infty)$ be a submultiplicative potential.

Lvapunov exp.

• Φ is **semimultiplicative** if there exists $c \in (0, 1]$ such that for every pair of words w, v,

 $\Phi(wv) \ge c\Phi(w)\Phi(v).$

Finiteness

New trends

Example: Norm potential under 1-domination hypothesis.

 Φ is quasimultiplicative if there exists c ∈ (0, 1] and l ∈ N such that for every pair of words w, v there exists a word u of length |u| ≤ l such that:

 $\Phi(WUV) \ge C\Phi(W)\Phi(V).$

Example: Norm potential under irreducibility hypothesis (more about this later).

ning	Subadd.	therm.	form.
	000000	000	

Ope

Lyapunov exp.

Dim. 00000 New trends

Consequences of quasimultiplicativity

Theorem (Feng'11)

Every quasimultiplicative potential Φ has a **unique** equilibrium state μ , which is ergodic, and satisfies **Gibbs inequalities**: there exists C > 0 such that for every cylinder $[w] \subseteq \Sigma_N$,

$$C^{-1}\Phi(w)e^{-|w|P(\Phi)} \le \mu([w]) \le C\Phi(w)e^{-|w|P(\Phi)}$$

In particular, μ has full support.

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
		00000			

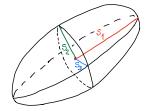
Singular values, Lyapunov exponents

Opening oo	Subadd. therm. form.	Lyapunov exp. o●oooo	Dim. 00000	Finiteness 0000000000000	New trends	
Sing	ılar values					

A linear map $L: \mathbb{R}^d \to \mathbb{R}^d$ has **singular values**

 $\mathfrak{s}_1(L) \geq \cdots \geq \mathfrak{s}_d(L).$

So $\mathfrak{s}_1(L) = ||L||$, $\mathfrak{s}_d(L) =$ "co-norm".



Ellipsoid $L(S^{d-1})$.

Exterior powers: $\Lambda^k \mathbb{R}^d = \mathbb{R}^{\binom{d}{k}}, \Lambda^k L \colon \Lambda^k \mathbb{R}^d \to \Lambda^k \mathbb{R}^d$.

 $\|\Lambda^k(L)\| =$ biggest expansion rate of k-volume $= \mathfrak{s}_1(L) \cdots \mathfrak{s}_k(L).$

Submultiplicativity: $\|\Lambda^k(L_1L_2)\| \leq \|\Lambda^k(L_1)\| \|\Lambda^k(L_2)\|.$

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
		000000			

Lyapunov exponents

Given a continuous **matrix cocycle** $A: X \rightarrow Mat(d \times d)$, we form the products:

$$A^{(n)}(x) \coloneqq A(T^{n-1}x) \cdots A(Tx)A(x).$$

For all x on a full probability set, the Lyapunov exponents

$$\lambda_1(x) \geq \cdots \geq \lambda_d(x), \qquad \lambda_k(x) \coloneqq \lim_{n \to \infty} \frac{1}{n} \log \mathfrak{s}_k(A^{(n)}(x))$$

exist. Indeed, for each k, $\lambda_1 + \cdots + \lambda_k$ is the asymptotic average of the following subadditive sequence:

$$f_{n,k}(x) := \log ||\Lambda^k(A^{(n)}(x))|| = \sum_{i=1}^k \log \mathfrak{s}_i(A^{(n)}(x)).$$

Opening oo	Subadd. therm. form.	Lyapunov exp. ०००●००	Dim. 00000	Finiteness 0000000000000	New trends

Singular value potential

Given an ordered vector

$$ec{lpha} = (lpha_1, \ldots, lpha_d) \in \mathbb{R}^d$$
 with $lpha_1 \ge \cdots \ge lpha_d$,

the function

$$\varphi_{\vec{\alpha}} \colon \mathsf{Mat}(d \times d) \to [0, +\infty), \quad \varphi_{\vec{\alpha}}(L) \coloneqq \prod_{i=1}^{d} \mathfrak{s}_{i}(L)^{\alpha_{i}}$$

is submultiplicative: $\varphi_{\vec{\alpha}}(L_1L_2) \leq \varphi_{\vec{\alpha}}(L_1)\varphi_{\vec{\alpha}}(L_2)$. Indeed:

$$\varphi_{\vec{\alpha}}(L) = \left(\prod_{i=1}^{d-1} \underbrace{\|\Lambda^{i}L\|^{\alpha_{i}-\alpha_{i+1}}}_{\text{submult.}}\right) \underbrace{\|\Lambda^{d}L\|^{\alpha_{d}}}_{\text{multiplicative}}$$

Given the cocycle (T, A) and a ordered vector $\vec{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbb{R}^d_+$ consider the subadditive sequence

$$f_{n,\vec{\alpha}}(x) \coloneqq \log \varphi_{\vec{\alpha}}(A^{(n)}(x)), \text{ where } \varphi_{\vec{\alpha}} \coloneqq \prod_{i=1}^{d} \mathfrak{s}_{i}^{\alpha_{i}}$$

The corresponding pressure is:

$$P(A, \vec{\alpha}) = \sup_{\mu \in \mathcal{M}_{T}(X)} \left(h_{\mu}(T) + \int \left(\alpha_{1} \lambda_{1} + \dots + \alpha_{d} \lambda_{d} \right) d\mu \right)$$

(provided $h_{top}(T) < \infty$).

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
		000000			

Some subjects that we won't go into:

- Continuity of the singular value pressure: See Feng–Shmerkin'14, Morris'16, Cao–Pesin–Zhao'19.
- Differentiability of the singular value pressure.
- Multifractal analysis of Lyapunov exponents: Given a linear cocycle, how big (in terms of topological entropy) is the set of points with a given Lyapunov spectrum? See Feng-Huang'10.
- Transfer operators and applications: See Guivarc'h-LePage'04, Piraino'20.

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
			00000		

Applications to dimension theory

Opening

Subadd. therm. form.

Lyapunov exp.

Dim. ⊙●000 Finiteness

New trends

Contracting IFS

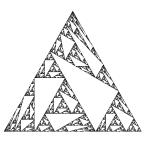
Consider an IFS (iterated function system) specified by contractions $T_1, \ldots, T_N \colon \mathbb{R}^d \to \mathbb{R}^d$. Its **attractor** is the unique nonempty compact set $\Lambda \subseteq \mathbb{R}^d$ such that

$$\Lambda = \bigcup_{i=1}^N T_i(\Lambda) \, .$$

In fact, A consists of all limits

 $\lim_{i\to\infty}T_{i_n}\circ\cdots\circ T_{i_1}(x).$

If the contractions T_i are affine then Λ is called a **self-affine set**.



A non-conformal Sierpiński gasket.

Dimension estimate

Let $\Lambda \subseteq \mathbb{R}^d$ be a self-affine set. Let A be the loc. const. cocycle induced by the linear parts of the contractions. The unique root s of the "Bowen-like" equation

$$P(A, \vec{\alpha}(s)) = 0 \quad \text{where } \vec{\alpha}(s) \coloneqq \left(\underbrace{1, \ldots, 1}_{\lfloor s \rfloor}, s - \lfloor s \rfloor, 0, \ldots, 0\right)$$

is called affinity dimension of the IFS.

Theorem (Falconer'88)

 $\dim_{H}(\Lambda) \leq \dim_{aff}(T_1, \ldots, T_N).$

Rem.: A corresponding equilibrium states on Σ_N project to measures on Λ which are natural candidates for measure of maximal dimension (Käenmäki'04).

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
			00000		

Dimension of typical fractals

Contractions $T_i(x) = A_i(x) + b_i \rightsquigarrow$ self affine-set $\Lambda \subseteq \mathbb{R}^d$.

Falconer bound: $\dim_{H}(\Lambda) \leq \dim_{aff}(T_1, \dots, T_N)$. (*)

Theorem (Falconer'88, Solomyak'98)

Equality holds in (\star) for sufficiently strong contractions ($||A_i|| < 1/2$) and Lebesgue-a.e. displacements (b_i).

Theorem (Bárány–Hochman–Rapaport'19)

Equality holds in (*) if:

● *d* = 2,

- $T_1(\Lambda), \ldots, T_N(\Lambda)$ pairwise disjoint (strong separation),
- the linear parts A₁, ..., A_N admit no common invariant set of lines (strong irreducibility) nor a common invariant conformal structure.

Opening oo	Subadd. therm. form.	Lyapunov exp. 000000	Dim. 0000●	Finiteness 0000000000000	New trends
Nonli	near fractals				

Theorem (Ban–Cao–Hu'10 (after Zhang'97, Barreira'03))

Given a repeller Λ for a C^1 expanding map f, consider the cocycle $(T, A) = (f|_{\Lambda}, Df|_{\Lambda})$. Then the unique root of the "Bowen-like" equation

$$P(A, \vec{\alpha}_{s}^{*}) = 0 \quad \text{where } \vec{\alpha}_{s}^{*} \coloneqq (0, \dots, 0, -s + \lfloor s \rfloor, \underbrace{-1, \dots, -1}_{\lfloor s \rfloor})$$

gives an upper bound for the Hausdorff dimension of Λ .

Question (Difficult, I suppose)

Is this upper bound typically sharp (among $f \in C^{1+\theta}$, say)?

ov exp. Dim.	Finiteness	New trends
	•000000000000	

Uniqueness or finiteness of equilibrium states for the singular value pressure

 Opening
 Subadd. therm. form.
 Lyapunov exp.
 Dim.
 Finiteness
 New trends

 00
 00000000
 000000
 000000
 00000
 0000
 0000

Example of nonunique EES

Consider the following pair of 2×2 matrices:

$$A_1 := \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}, \quad A_2 := \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix}$$

Claim: There are two ergodic equilibrium states for the norm potential $\Phi = \|\cdot\|$.

Indeed, since the matrices commute, the candidates for equilibrium states are Bernoulli measures μ_p , $p \in [0, 1]$.

$$h_{\mu_{p}}(\sigma) + \lambda_{1}(A, \mu_{p}) =$$

$$-p \log p - (1-p) \log(1-p) + |1-2p| \log 2 =$$

A tuple (A_1, \ldots, A_N) of $d \times d$ matrices is **irreducible** if there is no nontrivial common invariant subspace. This property only depends on the generated semigroup

$$S := \langle A_1, \ldots, A_N \rangle \subseteq Mat(d \times d).$$

Theorem (Feng'09)

If (A_1, \ldots, A_N) is irreducible then the norm potential is quasimultiplicative:

 $\begin{aligned} \exists c > 0 \ \exists \ell > 0 \ \forall B, C \in S \ \exists M \in S \ with \ \text{length}(M) \leq \ell \\ s.t. \quad \|BMC\| \geq c \|B\| \, \|C\| \,. \end{aligned}$

In particular, $\forall \alpha > 0$, the submult. potential $\Phi := \|\cdot\|^{\alpha}$ has a unique equil. state (and it has the Gibbs property).

Oper oo	ing	Subadd. therm.	form.	Lyapunov exp 000000		Dim. 00000	Finiteness	New trends
	Proo	of.						
	-	contradicti $0, B_n \in S$				ere e>	kist sequence	S
		$\forall M \in S,$	lengt	h(<i>M</i>) ≤ <i>n</i>	⇒	B B	$\frac{MC_n}{\ C_n\ } < \varepsilon_n.$	
	Pass	ing to sub	oseque	ences, $\frac{B_r}{\ B_r\ }$	n n∥ →	B and	$\frac{C_n}{\ C_n\ } \to C.$ Th	en:
			¥	$M \in S$,	ВМС	[°] = 0.		
	That	•	lm(C))	$=\bigcup_{M\in S}M($	Im(C	C)) ⊆ K	er(B).	
		e <i>B</i> = (n(<i>C</i>)) span					$(\mathbf{B}) \neq \mathbb{R}^d$. S bspace.	•

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
				000000000000000000000000000000000000000	

Finiteness of EES for the norm potentials

Theorem (Feng-Käenmäki?)

Let (A_1, \ldots, A_N) be any tuple of $d \times d$ matrices. Then, for every $\alpha > 0$, the submultiplicative potential $\Phi := \|\cdot\|^{\alpha}$ admits at most d ergodic equilibrium states.

Proof.

- If the tuple is irreducible, then Φ is quasimultiplicative.
- If the tuple is reducible then write it in block-triangular form, apply the previous result to each diagonal block.

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	Nev
				000000000000	

trends

Typical uniqueness of EES for sing. val. potentials

Theorem (Järvenpää–Järvenpää–Li–Stenflo'16)

For typical tuples of $d \times d$ matrices^a, the singular value potentials are quasimultiplicative, and in particular equilibrium states are unique and fully supported.

^{*a*} in the complement of an algebraic subset of positive codimension

Theorem (Park'20)

For typical fiber-bunched Hölder cocycles^a, the singular value potentials are quasimultiplicative, and in particular equilibrium states are unique and fully supported.

^asatisfying pinching & twisting conditions a la Bonatti–Viana, Avila–Viana

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
				0000000000000	

Finiteness of EES for sing. val. potentials

The following answers a question of Käenmäki'04:

Theorem (B.–Morris'18)

Take any tuple of invertible d × d matrices. Then every singular value potential admits finitely many ergodic equilibrium states, and all of them are fully supported.

Previous results: Feng–Käenmäki (d = 2), Käenmäki–Morris (d = 3), Käenmäki–Li (some $\vec{\alpha} \in \mathbb{Q}^d_+$).

Remarks:

- The bound on the number of EES depends only on *d*.
- Should work for locally constant cocycles over SFT (or sofic shifts)...

Opening oo	Subadd. therm. form.	Lyapunov exp. 000000	Dim. 00000	Finiteness ooooooooooooo	New trends
Curio	us corollary				

Corollary (previously a folklore open question)

If $N \ge 2$ and T_1, \ldots, T_N are invertible affine contractions, then

$$\dim_{\mathrm{aff}}(T_1,\ldots,T_{N-1}) < \dim_{\mathrm{aff}}(T_1,\ldots,T_N).$$

Proof.

> is impossible, and = would lead to existence of an equilibrium state supported on a proper subshift, which by the previous theorem is impossible as well. Strong irreducibility and quasimultiplicativity

Let $S \subseteq GL(d, \mathbb{R})$ be the semigroup generated by A_1, \ldots, A_N .

S is **strongly irreducible** if it admits no nontrivial invariant finite union of subspaces.

Proposition

Suppose $\forall i \in \{1, ..., d-1\}$, the semigroup $\Lambda^i S$ is strongly irreducible. Then all singular value potentials are simultaneously quasimultiplicative, that is,

 $\begin{aligned} \exists c > 0 \ \exists \ell > 0 \ \forall B, C \in S \ \exists M \in S \ with \ \mathsf{len}(M) \leq \ell \ s.t. \\ \forall i \in \{1, \dots, d-1\}, \quad \|\Lambda^i(BMC)\| \geq c \|\Lambda^i B\| \, \|\Lambda^i C\|. \end{aligned}$

Some important ingredients for the proof:

- The Zariski closure of a semigroup $S \subseteq GL(d, \mathbb{R})$ is a group $G \subseteq GL(d, \mathbb{R})$.
- If G° ⊆ G is the connected component of the identity, then:
 - G° is a group;
 - $[G: G^\circ] < \infty$.
 - *G*° is irreducible (as an algebraic variety).

Opening oo	Subadd. therm. form.	Lyapunov exp. 000000	Dim. 00000	Finiteness oooooooooooooooo	New trends	50
Pro	position (repeat	ed)				
Str	ong irr. on all ex	t. pow. ⇒ si	multane	eous quasi-mu	ılt.	

Proof.

By contradiction. Mimicking a previous argument, we find $B_i, C_i \in \text{End}(\Lambda^i \mathbb{R}^d)$ with $||B_i|| = ||C_i|| = 1$ such that:

$$\forall M \in S \exists i \in \{1, \ldots, d-1\} \text{ s.t. } B_i(\Lambda^i M)C_i = 0.$$

Let $X_i := \{M \in GL(d, \mathbb{R}) ; B_i(\Lambda^i M)C_i = 0\}$ (an algebraic set); then:

 $S \subseteq X_1 \cup \cdots \cup X_{d-1}.$

Taking Zariski closure:

$$G \subseteq X_1 \cup \cdots \cup X_{d-1}.$$

Since G° is an irreducible component of G, it is contained in some X_i .

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
				0000000000000000	

End of the proof.

We've just seen that $\exists i \in \{1, \dots, d-1\}$ such that

 $G^{\circ} \subseteq X_i := \{M \in \operatorname{GL}(d, \mathbb{R}) ; B_i(\Lambda^i M) C_i = 0\}$

So $\Lambda^i G^\circ$ is reducible: the space

 $E := \operatorname{span}(\Lambda^i G^\circ)(\operatorname{Im}(C_i)) \subseteq \operatorname{Ker}(B_i)$

is proper, nonzero, and $\Lambda^i G^\circ$ -invariant. Since $[G: G^\circ] < \infty$, the set $(\Lambda^i G)(E)$ is a $\Lambda^i G$ -invariant finite union of proper nonzero subspaces of $\Lambda^i \mathbb{R}^d$. This contradicts the strong irreducibility of $\Lambda^i S$.

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
				00000000000000	

Rough ideas for the proof of our main theorem:

- Look action on $\bigoplus_i \Lambda^i \mathbb{R}^d$.
- Using block diagonalization, we essentially can assume each Λⁱ action is irreducible.
- Consider the algebraic groups $G \supseteq G^{\circ}$.
- Morally, by passing to a finite cover, we can assume strong irreducibility.

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
					000

Directions for further research

Opening	Subadd. therm. form.	Lyapunov exp.	Dim.	Finiteness	New trends
					000

Question

Consider Hölder (fiber-bunched?) linear cocycles over a expanding or hyperbolic base dynamics. Is the number of ergodic equilibrium states of a singular value potential always finite? In the case of a locally constant cocycle generated by a tuple of invertible matrices (A_1, \ldots, A_N) , it was important to consider the Zariski closure of the semigroup generated by the matrices, which is an algebraic subgroup $G \subseteq GL(d, \mathbb{R})$.

Is there a similar tool for more general cocycles?

- Zimmer (80's) defined the **algebraic hull** of a measurable cocycle *A* as the smallest algebraic group *G* such that *A* is measurably conjugated to a *G*-valued cocycle.
- We can replace measurable class by Hölder class and obtain a **Hölder algebraic hull**.
- However, it seems difficult to "grab" this Hölder algebraic hull and so something useful with it...