Hypergeometric means and their completion

Jairo Bochi
Penn State

Ohio State Math. Dept. Colloquium
March 9, 2023

What is a mean? An ad hoc definition

$\Omega=$ set (perhaps finite)
To "each" function $f: \Omega \rightarrow \mathbb{R}_{+}$, we want to associate a number $m(f)$ so that the following properties hold:

- reflexivity: $f=c$ (constant) $\Rightarrow \boldsymbol{m}(f)=c$
- monotonicity: $f \leq g \Rightarrow m(f) \leq m(g)$
- homogeneity: $\forall \lambda \in \mathbb{R}_{+}, \mathfrak{m}(\lambda f)=\lambda \mathfrak{m}(f)$

Examples

- Arithmetic mean:

$$
\operatorname{am}\left(x_{1}, \ldots, x_{n}\right):=\frac{x_{1}+\cdots+x_{n}}{n}
$$

Functional version: if $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, then

$$
\mathfrak{a m}(f)=\mathbb{E}(f):=\int f d \mathbb{P} \quad \text { (a.k.a. expectation). }
$$

Examples

- Arithmetic mean:

$$
\mathfrak{a m}\left(x_{1}, \ldots, x_{n}\right):=\frac{x_{1}+\cdots+x_{n}}{n}
$$

Functional version: if $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, then

$$
\mathfrak{a} m(f)=\mathbb{E}(f):=\int f d \mathbb{P} \quad \text { (a.k.a. expectation). }
$$

- Geometric mean:

$$
\mathfrak{g m}\left(x_{1}, \ldots, x_{n}\right):=\left(x_{1} \cdots x_{n}\right)^{\frac{1}{n}}
$$

Functional version:

$$
\mathfrak{g m}(f):=\exp \int \log f d \mathbb{P}
$$

Hölder means (a.k.a. power means)

Definition

Given a positive function f on the probability space (Ω, \mathbb{P}), the Hölder mean of f with parameter $p \in \mathbb{R}$ is:

$$
\mathcal{M}_{p}(f):= \begin{cases}\left(\int f^{p} d \mathbb{P}\right)^{\frac{1}{p}} & \text { if } p \neq 0 \\ \exp \int \log f d \mathbb{P} & \text { if } p=0\end{cases}
$$

Continuity and monotonicity wrt parameter:

Characterization of Hölder means

Given a mean m and a homeomorphism ϕ (increasing or decreasing), consider a new (not necessarily homogeneous) mean

$$
\widetilde{\mathfrak{m}}(f):=\phi^{-1}(\mathfrak{m}(\phi \circ f))
$$

If $\mathfrak{m}=\mathfrak{a} \mathfrak{m}$, then $\widetilde{\mathfrak{m}}$ is called a quasi-arithmetic mean. Example: $\widetilde{\mathfrak{m}}=\mathbf{g m}, \phi=\log$.

Andrey Kolmogorov 1903-1987

Mitio
Nagumo
1905-1993

Bruno de Finetti 1906-1985

Georg Aumann
1906-1980

Børge Jessen
1907-1993

Theorem (~ 1930)

Hölder means are the only quasi-arithmetic homogeneous means.

A famous example of "nonlinear averaging"

Given numbers $b \geq a>0$, define $\left[a_{0}, b_{0}\right]:=[a, b]$ and recursively

$$
\left[a_{n+1}, b_{n+1}\right]:=\left[\operatorname{gm}\left(a_{n}, b_{n}\right), \mathfrak{a m}\left(a_{n}, b_{n}\right)\right] .
$$

These intervals shrink superexponentially fast to a point c, called the arithmetic geometric mean (AGM) of a and b.

A famous example of "nonlinear averaging"

Given numbers $b \geq a>0$, define $\left[a_{0}, b_{0}\right]:=[a, b]$ and recursively

$$
\left[a_{n+1}, b_{n+1}\right]:=\left[\operatorname{gm}\left(a_{n}, b_{n}\right), \mathfrak{a m}\left(a_{n}, b_{n}\right)\right] .
$$

These intervals shrink superexponentially fast to a point c, called the arithmetic geometric mean (AGM) of a and b.

Theorem (Lagrange 1785, Gauss 1800)

The AGM is related to an elliptic integral:

$$
\frac{1}{\operatorname{agm}(a, b)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}
$$

Symmetric means

Using the elementary symmetric polynomials, we form the symmetric means:

$$
\operatorname{sym}_{k}\left(x_{1}, \ldots, x_{n}\right):=\left(\frac{\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}} \cdots x_{i_{k}}}{\binom{n}{k}}\right)^{\frac{1}{k}}
$$

Thus, $\operatorname{sym}_{1} \equiv \mathfrak{a m}$ and $\operatorname{sym}_{n} \equiv \mathbf{g m}$.

Symmetric means

Using the elementary symmetric polynomials, we form the symmetric means:

$$
\operatorname{sym}_{k}\left(x_{1}, \ldots, x_{n}\right):=\left(\frac{\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}} \cdots x_{i_{k}}}{\binom{n}{k}}\right)^{\frac{1}{k}}
$$

Thus, $\operatorname{sym}_{1} \equiv \mathfrak{a m}$ and $\operatorname{sym}_{n} \equiv \mathbf{g m}$.

box with sides a, b, c

cube of side

Symmetric means (continued)

Monotonicity wrt parameter (Maclaurin, 1729):

Isaac Newton 1642-1727

Colin Maclaurin 1698-1746

INEQUALITIES

Limit laws for symmetric means?

Let X_{1}, X_{2}, \ldots be a sequence of positive i.i.d. random variables (or, more generally, a stationary ergodic process). To avoid discussing integrability issues, let's assume uniform boundedness away from 0 and ∞.

By the Law of Large Numbers (or the Ergodic Theorem),

$$
\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow \mathbb{E}(X) \quad \text { almost surely as } n \rightarrow \infty
$$

where X is a replica of the X_{i} 's.

Limit laws for symmetric means?

Let X_{1}, X_{2}, \ldots be a sequence of positive i.i.d. random variables (or, more generally, a stationary ergodic process). To avoid discussing integrability issues, let's assume uniform boundedness away from 0 and ∞.

By the Law of Large Numbers (or the Ergodic Theorem),

$$
\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow \mathbb{E}(X) \quad \text { almost surely as } n \rightarrow \infty
$$

where X is a replica of the X_{i} 's.

Theorem

For any $k \geq 1$,

$$
\operatorname{sym}_{k}\left(X_{1}, \ldots, X_{n}\right) \rightarrow \mathbb{E}(X) \quad \text { a.s. when } n \rightarrow \infty .
$$

Boring situation: No new limit.

A more exciting limit law

Theorem (Hálasz-Székely 1976)

Let k_{1}, k_{2}, \ldots be a sequence of integers such that $1 \leq k_{n} \leq n$ and k_{n} / n tends to some $c \in[0,1]$ as $n \rightarrow \infty$. Then, with probability 1 ,

$$
\lim _{n \rightarrow \infty} \operatorname{sym}_{k_{n}}\left(X_{1}, \ldots, X_{n}\right)
$$

exists and equals a "computable" number $\boldsymbol{H}^{\boldsymbol{H}} \mathbf{S}_{-c}(X)$ that depends only on the distribution of X and on the parameter c.

A more exciting limit law

Theorem (Hálasz-Székely 1976)

Let k_{1}, k_{2}, \ldots be a sequence of integers such that $1 \leq k_{n} \leq n$ and k_{n} / n tends to some $c \in[0,1]$ as $n \rightarrow \infty$. Then, with probability 1 ,

$$
\lim _{n \rightarrow \infty} \operatorname{sym}_{k_{n}}\left(X_{1}, \ldots, X_{n}\right)
$$

exists and equals a "computable" number $\boldsymbol{H}^{\boldsymbol{H}} \mathbf{S}_{-c}(X)$ that depends only on the distribution of X and on the parameter c.

Gábor Hálasz 1941-

Gábor J. Székely 1947-

Note: Székely was personally instigated by Kolmogorov to work on this (or a closely related) problem.

(Extended) Halász-Székely means

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.
Let f be a positive function on Ω with $\left\|f^{ \pm 1}\right\|_{\infty}<\infty$.

Definition

The Halász-Székely mean of f with parameter $\lambda \in \mathbb{R}$ is:

$$
\mathfrak{H} \mathbb{S}_{\lambda}(f):=\sup _{g>0}\left(\frac{\exp \int \log g d \mathbb{P}}{\int g d \mathbb{P}}\right)^{\frac{1}{\lambda}} \frac{\int f g d \mathbb{P}}{\int g d \mathbb{P}} \quad \text { if } \lambda>0 .
$$

(Extended) Halász-Székely means

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.
Let f be a positive function on Ω with $\left\|f^{ \pm 1}\right\|_{\infty}<\infty$.

Definition

The Halász-Székely mean of f with parameter $\lambda \in \mathbb{R}$ is:

$$
\mathfrak{H} \mathbf{S}_{\lambda}(f):=\sup _{g>0}\left(\frac{\exp \int \log g d \mathbb{P}}{\int g d \mathbb{P}}\right)^{\frac{1}{\lambda}} \frac{\int f g d \mathbb{P}}{\int g d \mathbb{P}} \quad \text { if } \lambda>0 .
$$

If $\lambda<0$, we use the same formula with inf in place of sup.
If $\lambda=0$, then $\mathscr{H} \xi_{0}(f):=\int f d \mathbb{P}$.

(Extended) Halász-Székely means

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.
Let f be a positive function on Ω with $\left\|f^{ \pm 1}\right\|_{\infty}<\infty$.

Definition

The Halász-Székely mean of f with parameter $\lambda \in \mathbb{R}$ is:

$$
\mathscr{H} \boldsymbol{S}_{\lambda}(f):=\sup _{g>0}\left(\frac{\exp \int \log g d \mathbb{P}}{\int g d \mathbb{P}}\right)^{\frac{1}{\lambda}} \frac{\int f g d \mathbb{P}}{\int g d \mathbb{P}} \quad \text { if } \lambda>0 .
$$

If $\lambda<0$, we use the same formula with inf in place of sup. If $\lambda=0$, then $\mathscr{H} \xi_{0}(f):=\int f d \mathbb{P}$.

Note: $\boldsymbol{J} \boldsymbol{S}_{\lambda}(f)$ only depends on the measure $f_{*} \mathbb{P}$. It is a "nonlinear barycenter" of this measure.

Special case: $\mathscr{H} \Sigma_{-1}(f)=\exp \int \log f d \mathbb{P}$ (geometric mean).

Worked-out example

Plot of $\mathcal{H} \mathbf{S}_{\lambda}(f)$ as a function of λ if $\mathbb{P}=$ Lebesgue measure on $[1,2]$ and $f(x) \equiv x$:

Functions $g=g_{\lambda}$ that attain the sup or inf (chosen so that $\max g=1$):

How did I compute this?

Practical computation

Recall: $\quad \mathscr{H} \mathbb{S}_{\lambda}(f):= \begin{cases}\sup _{g>0}\left(\frac{\exp \mathbb{E}(\log g)}{\mathbb{E}(g)}\right)^{\frac{1}{\lambda}} \frac{\mathbb{E}(g f)}{\mathbb{E}(g)} & \text { if } \lambda>0, \\ \mathbb{E}(f) & \text { if } \lambda=0, \\ \inf (\text { same stuff }) & \text { if } \lambda<0 .\end{cases}$
A positive function g that attains either the sup (if $\lambda>0$) or the \inf (if $\lambda<0$) above is called an equilibrium state.

Proposition

Equilibrium states g are the essentially unique, and are characterized as the positive solutions of the eq.:

$$
\frac{1}{g}+\frac{\lambda f}{\mathbb{E}(g f)}=\frac{1+\lambda}{\mathbb{E}(g)}
$$

(which reduces to a scalar equation for $\xi:=\mathbb{E}(f g) / \mathbb{E}(g)$...)

Limit theorems, revisited

```
Theorem (Halász-Székely 1976)
    \(k_{n}\)
    \(\frac{k_{n}}{n} \rightarrow c \in[0,1] \Rightarrow \operatorname{sym}_{k_{n}}\left(X_{1}, \ldots, X_{n}\right) \rightarrow \mathcal{H} \mathcal{S}_{-c}(X)\) a.s.
```


Limit theorems, revisited

Theorem (Halász-Székely 1976)

$$
\frac{k_{n}}{n} \rightarrow c \in[0,1] \quad \Rightarrow \quad \operatorname{sym}_{k_{n}}\left(X_{1}, \ldots, X_{n}\right) \rightarrow \mathcal{H}_{-c}(X) \text { a.s. }
$$

A deterministic version:

Theorem (B.-lommi-Ponce 2021)

Let X be a discrete random variable assuming distinct values a_{1}, \ldots, a_{n}, each with probability $\frac{1}{n}$. If $1 \leq k \leq n$, then

$$
\mathcal{H} s_{-k / n}(X) \leq \operatorname{sym}_{k}\left(a_{1}, \ldots, a_{n}\right) \leq(9 k)^{\frac{1}{2 k}} \mathfrak{H} \Sigma_{-k / n}(X)
$$

Combining these inequalities with continuity properties of $\mathcal{H} \$$ (both as function of the parameter and the distribution), the previous theorem follows.

Mean rates of expansion of a linear operator

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be linear. The expansion rate of A is the function

$$
v \in S^{n-1} \mapsto\|A v\|
$$

where $S^{n-1}:=\left\{v \in \mathbb{R}^{n}:\|v\|=1\right\}$ is the unit sphere.

Mean rates of expansion of a linear operator

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be linear. The expansion rate of A is the function

$$
v \in S^{n-1} \mapsto\|A v\|
$$

where $S^{n-1}:=\left\{v \in \mathbb{R}^{n}:\|v\|=1\right\}$ is the unit sphere. We compute the Hölder means of this function wrt the area measure σ :

$$
\begin{aligned}
\mathbf{e m}_{p}(A) & :=\left(\int_{S^{n-1}}\|A v\|^{p} d \sigma(v)\right)^{\frac{1}{p}} \quad \text { if } p \neq 0 \\
\mathbf{e m}_{0}(A) & :=\exp \int_{S^{n-1}} \log \|A v\| d \sigma(v)
\end{aligned}
$$

Mean rates of expansion of a linear operator

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be linear. The expansion rate of A is the function

$$
v \in S^{n-1} \mapsto\|A v\|
$$

where $S^{n-1}:=\left\{v \in \mathbb{R}^{n}:\|v\|=1\right\}$ is the unit sphere. We compute the Hölder means of this function wrt the area measure σ :

$$
\begin{aligned}
& \mathbf{e m}_{p}(A):=\left(\int_{S^{n-1}}\|A v\|^{p} d \sigma(v)\right)^{\frac{1}{p}} \quad \text { if } p \neq 0, \\
& \mathbf{e m}_{0}(A):=\exp \int_{S^{n-1}} \log \|A v\| d \sigma(v) .
\end{aligned}
$$

Definition

The ellipsoidal mean with parameter p of numbers $a_{1}, \ldots, a_{n} \geq 0$ is $\mathbf{e m}_{p}\left(a_{1}, \ldots, a_{n}\right)=\mathbf{e m}_{p}(A)$, where $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$.

Some special cases

Recall:
$\mathbf{e m}_{p}\left(a_{1}, \ldots, a_{n}\right):=\left(\int_{S^{n-1}}\|A v\|^{p} d \sigma(v)\right)^{\frac{1}{p}}, \quad A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$.

Exercises:

$$
\begin{aligned}
& \mathbf{e m}_{2}(A)=\sqrt{\frac{1}{n} \sum a_{i}^{2}}=\mathcal{M}_{2}\left(a_{1}, \ldots, a_{n}\right) \\
& \mathbf{e m} \\
&-n(A)
\end{aligned}=\sqrt[n]{\prod a_{i}}=\mathcal{M}_{0}\left(a_{1}, \ldots, a_{n}\right)
$$

Are ellipsoidal means always Hölder? Definitely no!

Other special ellipsoidal means

- If $n=2, A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, then

$$
\begin{aligned}
\mathbf{e m}_{-1}(a, b) & =\left(\int_{S^{1}}\|A v\|^{-1} d \sigma(v)\right)^{-1} \\
& =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}\right)^{-1} \\
& =\operatorname{agm}(a, b)
\end{aligned}
$$

Other special ellipsoidal means

- If $n=2, A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, then

$$
\begin{aligned}
\mathbf{e m}_{-1}(a, b) & =\left(\int_{S^{1}}\|A v\|^{-1} d \sigma(v)\right)^{-1} \\
& =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}\right)^{-1} \\
& =\operatorname{agm}(a, b)
\end{aligned}
$$

- $\mathbf{e m}_{0}(a, b)=\frac{a+b}{2}($ Haruki, 1991).

Other special ellipsoidal means

- If $n=2, A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, then

$$
\begin{aligned}
\mathbf{e m}_{-1}(a, b) & =\left(\int_{S^{1}}\|A v\|^{-1} d \sigma(v)\right)^{-1} \\
& =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}\right)^{-1} \\
& =\operatorname{agm}(a, b)
\end{aligned}
$$

- $\mathrm{em}_{0}(a, b)=\frac{a+b}{2}$ (Haruki, 1991).
- $\mathbf{e m}_{1}(a, b)=\frac{1}{2 \pi}$. perimeter of the ellipse with semiaxes a, b (the quintessential elliptic integral).

Other special ellipsoidal means

- If $n=2, A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, then

$$
\begin{aligned}
\mathbf{e m}_{-1}(a, b) & =\left(\int_{S^{1}}\|A v\|^{-1} d \sigma(v)\right)^{-1} \\
& =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}\right)^{-1} \\
& =\operatorname{agm}(a, b)
\end{aligned}
$$

- $\mathbf{e m}_{0}(a, b)=\frac{a+b}{2}$ (Haruki, 1991).
- $\mathbf{e m}_{1}(a, b)=\frac{1}{2 \pi}$. perimeter of the ellipse with semiaxes a, b (the quintessential elliptic integral).
- Generalization: $\operatorname{area}\left(A\left(S^{n-1}\right)\right)=\mathbf{e m}_{1}\left(\Lambda^{n-1} A\right) \cdot \operatorname{area}\left(S^{n-1}\right)$.

Other special ellipsoidal means

- If $n=2, A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, then

$$
\begin{aligned}
\mathbf{e m}_{-1}(a, b) & =\left(\int_{S^{1}}\|A v\|^{-1} d \sigma(v)\right)^{-1} \\
& =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}\right)^{-1} \\
& =\operatorname{agm}(a, b)
\end{aligned}
$$

- $\mathbf{e m}_{0}(a, b)=\frac{a+b}{2}($ Haruki, 1991).
- $\mathrm{em}_{1}(a, b)=\frac{1}{2 \pi}$. perimeter of the ellipse with semiaxes a, b (the quintessential elliptic integral).
- Generalization: $\operatorname{area}\left(A\left(S^{n-1}\right)\right)=\mathbf{e m}_{1}\left(\Lambda^{n-1} A\right) \cdot \operatorname{area}\left(S^{n-1}\right)$.
- Also related to: mean width and electrostatic capacities of ellipsoids, spherical functions, Lyapunov exponents, Kullback-Leiber divergence.

Limit laws for ellipsoidal means?

Consider a sequence A_{n} of diagonal matrices of increasing dimensions $n \times n$

$$
A_{n}=\operatorname{diag}\left(a_{n, 1}, \ldots, a_{n, n}\right), \quad a_{n, i}>0 .
$$

Assume that there exists a well-defined limit distribution of the diagonal entries:

$$
\mu_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{n, i}} \xrightarrow{\text { weakly }} \mu \quad \text { as } n \rightarrow \infty
$$

Limit laws for ellipsoidal means?

Consider a sequence A_{n} of diagonal matrices of increasing dimensions $n \times n$

$$
A_{n}=\operatorname{diag}\left(a_{n, 1}, \ldots, a_{n, n}\right), \quad a_{n, i}>0 .
$$

Assume that there exists a well-defined limit distribution of the diagonal entries:

$$
\mu_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{n, i}} \xrightarrow{\text { weakly }} \mu \quad \text { as } n \rightarrow \infty
$$

Theorem

If the numbers $a_{n, i}$ are bounded away from 0 and ∞, then, for any $p \in \mathbb{R}$,

$$
\mathbf{e m}_{p}\left(A_{n}\right) \rightarrow \mathcal{M}_{2}(\mu) \quad \text { as } n \rightarrow \infty
$$

Rivin 2004: More precise results (weaker assumption, estimates), but only for $p=0$ or 1 .

Proving that $\mathrm{em}_{p}\left(A_{n}\right) \rightarrow \boldsymbol{M}_{2}(\mu)$

- Consider the expansion rate function

$$
f_{n}: S^{n-1} \rightarrow \mathbb{R}_{+}, \quad f_{n}(v):=\left\|A_{n} v\right\|
$$

- As mentioned before, $\mathbf{e m}_{2} \equiv \mathcal{M}_{2}$ (in particular, the theorem is trivial for $p=2$). This means that f_{n}^{2} has (arithmetic) mean equal to $\mathcal{N}_{2}\left(\mu_{n}\right)^{2}$.
- The function f_{n}^{2} is Lipschitz (with bounds).

Proving that $\mathrm{em}_{\rho}\left(A_{n}\right) \rightarrow \mathcal{M}_{2}(\mu)$

- Consider the expansion rate function

$$
f_{n}: S^{n-1} \rightarrow \mathbb{R}_{+}, \quad f_{n}(v):=\left\|A_{n} v\right\|
$$

- As mentioned before, $\mathbf{e m}_{2} \equiv \mathfrak{M}_{2}$ (in particular, the theorem is trivial for $p=2$). This means that f_{n}^{2} has (arithmetic) mean equal to $\mathcal{N}_{2}\left(\mu_{n}\right)^{2}$.
- The function f_{n}^{2} is Lipschitz (with bounds).
- By concentration of measure, if $n \gg 1$, then f_{n}^{2} is very close to its mean on 99% of the sphere.

Proving that em $\mathrm{m}_{\rho}\left(A_{n}\right) \rightarrow \mathcal{M}_{2}(\mu)$

- Consider the expansion rate function

$$
f_{n}: S^{n-1} \rightarrow \mathbb{R}_{+}, \quad f_{n}(v):=\left\|A_{n} v\right\| .
$$

- As mentioned before, $\mathbf{e m}_{2} \equiv \mathfrak{M}_{2}$ (in particular, the theorem is trivial for $p=2$). This means that f_{n}^{2} has (arithmetic) mean equal to $\mathcal{M}_{2}\left(\mu_{n}\right)^{2}$.
- The function f_{n}^{2} is Lipschitz (with bounds).
- By concentration of measure, if $n \gg 1$, then f_{n}^{2} is very close to its mean on 99% of the sphere.
- Since p is fixed, it follows that $\mathbf{e m}_{p}\left(A_{n}\right)$, which is the p-Hölder mean of f_{n}, is very close to $\mathcal{M}_{2}\left(\mu_{n}\right)$, and therefore to $\boldsymbol{N}_{2}(\mu)$. QED

Proving that em $\mathrm{m}_{\rho}\left(A_{n}\right) \rightarrow \mathcal{M}_{2}(\mu)$

- Consider the expansion rate function

$$
f_{n}: S^{n-1} \rightarrow \mathbb{R}_{+}, \quad f_{n}(v):=\left\|A_{n} v\right\| .
$$

- As mentioned before, $\mathbf{e m}_{2} \equiv \boldsymbol{\mathcal { M }}_{2}$ (in particular, the theorem is trivial for $p=2$). This means that f_{n}^{2} has (arithmetic) mean equal to $\mathcal{M}_{2}\left(\mu_{n}\right)^{2}$.
- The function f_{n}^{2} is Lipschitz (with bounds).
- By concentration of measure, if $n \gg 1$, then f_{n}^{2} is very close to its mean on 99% of the sphere.
- Since p is fixed, it follows that $\mathbf{e m}_{p}\left(A_{n}\right)$, which is the p-Hölder mean of f_{n}, is very close to $\mathcal{M}_{2}\left(\mu_{n}\right)$, and therefore to $\boldsymbol{N}_{2}(\mu)$. QED

This theorem isn't very exciting, since the limit is nothing new.

An unexpected limit law for ellipsoidal means

As before, consider a sequence A_{n} of matrices of increasing dimensions $n \times n$, whose singular values $a_{n, i}$ are bounded away from 0 and ∞, and have a well-defined limit distribution.

Theorem

Let $p(n)$ be a sequence such that $\frac{p(n)}{n} \rightarrow c \in \mathbb{R}$. Then,

$$
\mathrm{em}_{p(n)}\left(A_{n}\right) \rightarrow
$$

An unexpected limit law for ellipsoidal means

As before, consider a sequence A_{n} of matrices of increasing dimensions $n \times n$, whose singular values $a_{n, i}$ are bounded away from 0 and ∞, and have a well-defined limit distribution.

Theorem

Let $p(n)$ be a sequence such that $\frac{p(n)}{n} \rightarrow c \in \mathbb{R}$. Then,

$$
\mathbf{e m}_{p(n)}\left(A_{n}\right) \rightarrow \mathcal{J} \mathbf{S}_{c / 2}\left(\mu^{(2)}\right),
$$

where $\mu^{(2)}$ is the limit distribution of $a_{n, i}^{2}$ (the squares of the singular values).

What's the explanation for this miracle? Is there some relation between symmetric means and ellipsoidal means?

An unexpected limit law for ellipsoidal means

As before, consider a sequence A_{n} of matrices of increasing dimensions $n \times n$, whose singular values $a_{n, i}$ are bounded away from 0 and ∞, and have a well-defined limit distribution.

Theorem

Let $p(n)$ be a sequence such that $\frac{p(n)}{n} \rightarrow c \in \mathbb{R}$. Then,

$$
\mathbf{e m}_{p(n)}\left(A_{n}\right) \rightarrow \mathcal{J} \mathbf{S}_{c / 2}\left(\mu^{(2)}\right),
$$

where $\mu^{(2)}$ is the limit distribution of $a_{n, i}^{2}$ (the squares of the singular values).

What's the explanation for this miracle? Is there some relation between symmetric means and ellipsoidal means? Well, there is no direct relation (as far as I could determine). The clue is that these two means are members of a larger family...

Dirichlet distribution

Definition

The Dirichlet distribution with parameter $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}_{+}^{n}$. is the probability measure θ_{b} on the standard unit simplex

$$
\Delta^{n-1}:=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}: u_{1}+\cdots+u_{n}=1\right\}
$$

whose density wrt the area measure is proportional to the function

$$
u_{1}^{b_{1}-1} \cdots u_{n}^{b_{n}-1}
$$

Dirichlet distribution

Definition

The Dirichlet distribution with parameter $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}_{+}^{n}$. is the probability measure θ_{b} on the standard unit simplex

$$
\Delta^{n-1}:=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}: u_{1}+\cdots+u_{n}=1\right\}
$$

whose density wrt the area measure is proportional to the function

$$
u_{1}^{b_{1}-1} \cdots u_{n}^{b_{n}-1}
$$

Two special cases:

- If $\mathbf{b}=(1, \ldots, 1)$, then $\theta_{\mathbf{b}}=$ normalized area on Δ^{n-1}.

Dirichlet distribution

Definition

The Dirichlet distribution with parameter $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}_{+}^{n}$. is the probability measure θ_{b} on the standard unit simplex

$$
\Delta^{n-1}:=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}: u_{1}+\cdots+u_{n}=1\right\}
$$

whose density wrt the area measure is proportional to the function

$$
u_{1}^{b_{1}-1} \cdots u_{n}^{b_{n}-1}
$$

Two special cases:

- If $\mathbf{b}=(1, \ldots, 1)$, then $\theta_{\mathbf{b}}=$ normalized area on Δ^{n-1}.
- If $\mathbf{b}=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$, then $\theta_{\mathbf{b}}=$ the push-forward of normalized area on the sphere under the map

$$
\left(x_{1}, \ldots, x_{n}\right) \in S^{n-1} \mapsto\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \in \Delta^{n-1}
$$

Limit cases

$$
\mathbf{w} \in \Delta^{n-1} \Rightarrow \theta_{s w} \text { tends to } \begin{cases}\sum_{i} w_{i} \delta_{e_{i}} & \text { as } s \rightarrow 0^{+} \\ \delta_{\mathbf{w}} & \text { as } s \rightarrow \infty\end{cases}
$$

Visualization for $n=2$, so $\Delta^{n-1}=$ an interval:

Limit cases

$$
\mathbf{w} \in \Delta^{n-1} \Rightarrow \theta_{s w} \text { tends to } \begin{cases}\sum_{i} w_{i} \delta_{e_{i}} & \text { as } s \rightarrow 0^{+} \\ \delta_{\mathbf{w}} & \text { as } s \rightarrow \infty\end{cases}
$$

Visualization for $n=2$, so $\Delta^{n-1}=$ an interval:

Limit cases

$$
\mathbf{w} \in \Delta^{n-1} \Rightarrow \theta_{s w} \text { tends to } \begin{cases}\sum_{i} w_{i} \delta_{e_{i}} & \text { as } s \rightarrow 0^{+} \\ \delta_{\mathbf{w}} & \text { as } s \rightarrow \infty\end{cases}
$$

Visualization for $n=2$, so $\Delta^{n-1}=$ an interval:

Limit cases

$$
\mathbf{w} \in \Delta^{n-1} \Rightarrow \theta_{s w} \text { tends to } \begin{cases}\sum_{i} w_{i} \delta_{e_{i}} & \text { as } s \rightarrow 0^{+} \\ \delta_{\mathbf{w}} & \text { as } s \rightarrow \infty\end{cases}
$$

Visualization for $n=2$, so $\Delta^{n-1}=$ an interval:

Limit cases

$$
\mathbf{w} \in \Delta^{n-1} \Rightarrow \theta_{s w} \text { tends to } \begin{cases}\sum_{i} w_{i} \delta_{e_{i}} & \text { as } s \rightarrow 0^{+} \\ \delta_{\mathbf{w}} & \text { as } s \rightarrow \infty\end{cases}
$$

Visualization for $n=2$, so $\Delta^{n-1}=$ an interval:

Limit cases

$$
\mathbf{w} \in \Delta^{n-1} \Rightarrow \theta_{s w} \text { tends to } \begin{cases}\sum_{i} w_{i} \delta_{e_{i}} & \text { as } s \rightarrow 0^{+} \\ \delta_{\mathbf{w}} & \text { as } s \rightarrow \infty\end{cases}
$$

Visualization for $n=2$, so $\Delta^{n-1}=$ an interval:

Limit cases

$$
\mathbf{w} \in \Delta^{n-1} \Rightarrow \theta_{s w} \text { tends to } \begin{cases}\sum_{i} w_{i} \delta_{e_{i}} & \text { as } s \rightarrow 0^{+} \\ \delta_{\mathbf{w}} & \text { as } s \rightarrow \infty\end{cases}
$$

Visualization for $n=2$, so $\Delta^{n-1}=$ an interval:

Properties (aggregation and neutrality)

Given $n>k>1$, consider the map

$$
\begin{aligned}
\Delta^{n-1} & \rightarrow \Delta^{n-k} \\
\left(u_{1}, \ldots, u_{n}\right) & \mapsto\left(u_{1}+\cdots+u_{k}, u_{k+1}, \ldots, u_{n}\right)
\end{aligned}
$$

whose fibers are (scaled copies of) Δ^{k-1}.

Properties (aggregation and neutrality)

Given $n>k>1$, consider the map

$$
\begin{aligned}
\Delta^{n-1} & \rightarrow \Delta^{n-k} \\
\left(u_{1}, \ldots, u_{n}\right) & \mapsto\left(u_{1}+\cdots+u_{k}, u_{k+1}, \ldots, u_{n}\right)
\end{aligned}
$$

whose fibers are (scaled copies of) Δ^{k-1}.

- Aggregation property: Dirichlet on Δ^{n-1} projects to Dirichlet on Δ^{n-k};

Properties (aggregation and neutrality)

Given $n>k>1$, consider the map

$$
\begin{aligned}
\Delta^{n-1} & \rightarrow \Delta^{n-k} \\
\left(u_{1}, \ldots, u_{n}\right) & \mapsto\left(u_{1}+\cdots+u_{k}, u_{k+1}, \ldots, u_{n}\right)
\end{aligned}
$$

whose fibers are (scaled copies of) Δ^{k-1}.

- Aggregation property: Dirichlet on Δ^{n-1} projects to Dirichlet on Δ^{n-k};
- Neutrality property: the conditional measures are Dirichlets.

Carlson's hypergeometric function $R(1963)$

Definition

Given $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right), \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}, t \in \mathbb{R}$, define:

$$
R_{t}(\mathbf{b} ; \mathbf{x}):=\int_{\Delta^{n-1}}\langle\mathbf{u}, \mathbf{x}\rangle^{t} d \theta_{\mathbf{b}}(\mathbf{u})
$$

Carlson's hypergeometric function $R(1963)$

Definition

Given $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right), \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}, t \in \mathbb{R}$, define:

$$
R_{t}(\mathbf{b} ; \mathbf{x}):=\int_{\Delta^{n-1}}\langle\mathbf{u}, \mathbf{x}\rangle^{t} d \theta_{\mathbf{b}}(\mathbf{u})
$$

A special case:

$$
\begin{aligned}
& R_{\frac{p}{2}}\left(\frac{1}{2}, \cdots, \frac{1}{2} ; a_{1}^{2}, \ldots, a_{n}^{2}\right)= \int_{S^{n-1}}\|A v\|^{p} d \sigma(v) \\
& \quad \text { where } A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) .
\end{aligned}
$$

This follows from the change of variables $u_{i}=v_{i}^{2}$, which (as mentioned before) sends the area measure σ on S^{n-1} to the Dirichlet measure $\theta_{\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)}$ on Δ^{n-1}.

Properties of the function R

- homogeneity of degree t :

$$
R_{t}(\mathbf{b} ; \lambda \mathbf{x})=\lambda^{t} R_{t}(\mathbf{b} ; \mathbf{x})
$$

- symmetry under permutations of indices;
- aggregation property:

$$
x_{1}=x_{2} \Rightarrow R_{t}(\mathbf{b}, \mathbf{x})=R_{t}\left(b_{1}+b_{2}, b_{3}, \ldots, b_{n} ; x_{1}, x_{3}, \ldots, x_{n}\right)
$$

- and LOTS of others

Classical hypergeometric function $F={ }_{2} F_{1}$ (Euler 1769)

$$
\begin{aligned}
& x(1-x) \frac{d^{2} y}{d x^{2}}+[c-(a+b+1) x] \frac{d y}{d x}-a b y=0 \\
& F(a, b ; c ; x)=1+\frac{a b}{c} x+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{x^{2}}{2!}+\cdots \\
&=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} u^{b-1}(1-u)^{c-b-1}(1-u x)^{-a} d u
\end{aligned}
$$

Euler
1707-1783

Pfaff
1765-1825

Gauss
1777-1855

Kummer 1810-1893

Riemann 1826-1866

R versus F's

Carlson's R is related to Euler's $F={ }_{2} F_{1}$ if $n=2$, to Appell's F_{1} (1880) if $n=3$, and to Lauricella's $F_{D}(1893)$ for any n.

$$
\begin{aligned}
F(a, b ; c ; x) & =R_{-a}(b, c-b ; 1-x, 1) \\
R_{t}\left(b_{1}, b_{2} ; x_{1}, x_{2}\right) & =x_{2}^{t} F\left(-t, b_{1} ; b_{1}+b_{2} ; 1-\frac{x_{1}}{x_{2}}\right)
\end{aligned}
$$

"The symmetry of R entails the cost of an extra variable resulting from homogeneous coordinates. To use $a x^{2}+b x y+c y^{2}$ instead of $a x^{2}+b x+c$ would be analogous."

Paul Émile Appell 1855-1930

Giuseppe Lauricella 1867-1913

Bille Chandler Carlson 1924-2013

Advantages of symmetry

One example (among many): Pfaff's reflection law

$$
\begin{equation*}
\frac{1}{(1-z)^{a}} F\left(a, b ; c ;-\frac{z}{1-z}\right)=F(a, c-b ; c ; z) \tag{1}
\end{equation*}
$$

becomes

$$
\begin{equation*}
R_{t}\left(b_{1}, b_{2} ; z_{1}, z_{2}\right)=R_{t}\left(b_{2}, b_{1} ; z_{2}, z_{1}\right) . \tag{2}
\end{equation*}
$$

SPECIAL FUNCTIONS OF APPLIED MATHEMATICS

㐫

$\triangle \triangleright C \square$
igital
ibrary of
athematical

Chapter 19 Elliptic Integrals

B. C. Carlson

Mathematics Department and Ames Laboratory (U.S. Department of Energy), Iowa State
University, Ames, Iowa.

Carlson's hypergeometric means (1964)

Given an tuple of positive numbers \mathbf{x}, a weight vector $\mathbf{w} \in \Delta^{n-1}$, and parameters $t \in \mathbb{R} \backslash\{0\}$ (the exponent), $s>0$ (the concentration), the hypergeometric mean is

$$
\operatorname{hygm}_{t, s}(\mathbf{x}, \mathbf{w}):=\left[R_{t}(s \mathbf{w} ; \mathbf{x})\right]^{\frac{1}{t}}=\left(\int_{\Delta^{n-1}}\langle\mathbf{u}, \mathbf{x}\rangle^{t} d \theta_{\mathbf{b}}(\mathbf{u})\right)^{\frac{1}{t}}
$$

Carlson's hypergeometric means (1964)

Given an tuple of positive numbers \mathbf{x}, a weight vector $\mathbf{w} \in \Delta^{n-1}$, and parameters $t \in \mathbb{R} \backslash\{0\}$ (the exponent), $s>0$ (the concentration), the hypergeometric mean is

$$
\operatorname{fygm}_{t, s}(\mathbf{x}, \mathbf{w}):=\left[R_{t}(\mathbf{s w} ; \mathbf{x})\right]^{\frac{1}{t}}=\left(\int_{\Delta^{n-1}}\langle\mathbf{u}, \mathbf{x}\rangle^{t} d \theta_{\mathbf{b}}(\mathbf{u})\right)^{\frac{1}{t}}
$$

Note that this is a t-Hölder wrt the Dirichlet measure $\theta_{s w}$. So it makes sense to extend it to $t=0$ as the corresponding geometric mean:

$$
\operatorname{hygm}_{0, s}(\mathbf{x}, \mathbf{w}):=\exp \int_{\Delta^{n-1}} \log \langle\mathbf{u}, \mathbf{z}\rangle d \theta_{\mathbf{b}}(\mathbf{u})
$$

(related to another hypergeometric function $L_{0}:=\left.\frac{\partial R_{t}}{\partial t}\right|_{t=0}$).

Hypergeometric means extend ellipsoidal means

$$
\boldsymbol{e m}_{p}\left(a_{1}, \ldots, a_{n}\right)=\sqrt{\text { hygm } \frac{p}{2}, \frac{n}{2}\left(a_{1}^{2}, \ldots, a_{n}^{2} ; \frac{1}{n}, \cdots, \frac{1}{n}\right)} .
$$

Hypergeometric means extend ellipsoidal means

$$
\mathbf{e m}_{p}\left(a_{1}, \ldots, a_{n}\right)=\sqrt{\hat{\operatorname{hygm}} \frac{p}{2}, \frac{n}{2}\left(a_{1}^{2}, \ldots, a_{n}^{2} ; \frac{1}{n}, \cdots, \frac{1}{n}\right)} .
$$

The hypergeometric mean is more flexible: s doesn't need to be a half-integer, and it allows for weights.

Note that weights work as they should (by the aggregation property of R).

Special cases of the hypergeometric mean

fygm $_{t, s}$ can be defined on the closed half-plane $s \geq 0$.
Special cases:

- Concentration $s=0 \Rightarrow$ Hölder mean with exponent t
- Exponent $t=1 \Rightarrow$ arithmetic mean
- $t=-s \Rightarrow$ geometric mean
- and many other particular means...

Examples: level sets

(Levels correspond to Hölder means with spacing $\frac{1}{4}$)
The levels sets are not straight lines, except for $s=-t(G M)$, $t=1$ (AM) (and $t=\frac{1}{2}-\frac{s}{2}$ if $\left.n=2\right)$).

Examples: level sets

(Levels correspond to Hölder means with spacing $\frac{1}{4}$)
The levels sets are not straight lines, except for $s=-t(G M)$, $t=1$ (AM) (and $t=\frac{1}{2}-\frac{s}{2}$ if $\left.n=2\right)$).

Boring limit theorems

Theorem (Carlson 1964)
For any fixed $t \in \mathbb{R}$,

$$
\lim _{s \rightarrow+\infty} \mathfrak{h y g m}_{t, s}(\mathbf{x}, \mathbf{w})=\mathfrak{a m}(\mathbf{x}, \mathbf{w}) .
$$

Boring limit theorems

Theorem (Carlson 1964)

For any fixed $t \in \mathbb{R}$,

$$
\lim _{s \rightarrow+\infty} \hat{h y g m}_{t, s}(\mathbf{x}, \mathbf{w})=\mathfrak{a m}(\mathbf{x}, \mathbf{w}) .
$$

Theorem (Brenner-Carlson 1987)

Suppose μ_{n} is a sequence of discrete probability measures supported on a common compact subinterval of \mathbb{R}_{+}, and converging weakly to some probability μ. Let $t \in \mathbb{R}$ be fixed and $s=s(n) \rightarrow+\infty$. Then,

$$
\lim _{n \rightarrow \infty} \operatorname{hygm}_{t, s(n)}\left(\mu_{n}\right)=\mathfrak{a m}(\mu) .
$$

No new limits

Exciting limit theorem

Theorem

Suppose μ_{n} is a sequence of discrete probability measures supported on a common compact subinterval of \mathbb{R}_{+}, and converging weakly to some probability μ. If $t=t(n)$ and $s=s(n) \rightarrow+\infty$ are such that $t / s \rightarrow \lambda \in \mathbb{R}$, then

$$
\lim _{n \rightarrow+\infty} \mathfrak{h y g m}_{t(n), s(n)}\left(\mu_{n}\right)=\mathcal{H} \Sigma_{\lambda}(\mu) .
$$

Disclaimer: \exists related results on approximation of hypergeometric means using saddle point method: Jiang-Kadane-Dickey 1991, Butler-Wood 2015

A compactification of the space of parameters

Projective compactification of the space of parameters (s, t) : from a half-plane to a half-disk.

This is like a "celestial sphere":

The theory is still incomplete...

Note that the Hálasz-Székely means are "functional" means (or "barycenters").

What about the hypergeometric means - do they admit a functional version?

The answer is yes!
Short explanation: Any homogeneous mean coherently defined for weighted finite lists of arbitrary lengths can be extended to a functional mean (i.e. barycenter).

To find this extension concretely, the first step is to extend the Dirichlet measures...

Ferguson-Dirichlet process

The simplex Δ^{n-1} is the space of probability measures on the finite set $F=\{1, \ldots, n\}$. Therefore, each Dirichlet $\theta_{\mathbf{b}}$ is a probability distribution on set of probabilities on F (think "a bag of loaded dice").

Ferguson-Dirichlet process

The simplex Δ^{n-1} is the space of probability measures on the finite set $F=\{1, \ldots, n\}$. Therefore, each Dirichlet $\theta_{\mathbf{b}}$ is a probability distribution on set of probabilities on F (think "a bag of loaded dice").

Theorem (Freedman 1963, Fabius 1964, Ferguson 1973)

Let β be a positive finite measure on (Ω, \mathcal{F}). Then there exist a random probability measure μ on Ω such that, for any finite measurable partition $A_{1} \sqcup \cdots \sqcup A_{n}=X$, the distribution of the random vector $\left(\mu\left(A_{1}\right), \ldots, \mu\left(A_{n}\right)\right) \in \Delta^{n-1}$ is Dirichlet with parameter $\left(\beta\left(A_{1}\right), \ldots, \beta\left(A_{n}\right)\right)$.

This result produces a probability measure on the space of probability measures on Ω, called Ferguson-Dirichlet measure and denoted Θ_{β}.

Key: the aggregation property of the (finite-dimensional) Dirichlet.

Infinite-dimensional hypergeometric stuff

$\beta=$ a finite measure on \mathbb{R}_{+}

$$
R_{t}(\beta):=\int_{\mathcal{P}\left(\mathbb{R}_{+}\right)}\left(\int_{\mathbb{R}_{+}} x d \mu(x)\right)^{t} d \Theta_{\beta}(\mu)
$$

If β is a discrete measure $\sum b_{i} \delta_{x_{i}}$, we get the previous $R_{t}(\mathbf{b}, \mathbf{x})$.
Disclaimer: Many people considered averages wrt Ferguson-Dirichlet. It was already known that hypergeometric functions have an infinite dimensional generalization: Lijoi-Regazzini 2004

Infinite-dimensional hypergeometric stuff

$\beta=$ a finite measure on \mathbb{R}_{+}

$$
R_{t}(\beta):=\int_{\mathcal{P}\left(\mathbb{R}_{+}\right)}\left(\int_{\mathbb{R}_{+}} x d \mu(x)\right)^{t} d \Theta_{\beta}(\mu)
$$

If β is a discrete measure $\sum b_{i} \delta_{x_{i}}$, we get the previous $R_{t}(\mathbf{b}, \mathbf{x})$.
Disclaimer: Many people considered averages wrt Ferguson-Dirichlet. It was already known that hypergeometric functions have an infinite dimensional generalization: Lijoi-Regazzini 2004
$\mu=$ a probability measure on \mathbb{R}_{+}

$$
\operatorname{fygm}_{t, s}(\mu):=\left[R_{t}(s \mu)\right]^{\frac{1}{t}}
$$

Completion of hypergeometric means

Theorem (Main theorem)

The hypergeometric means can be extended to a continuous map

$$
\text { fygm : } H \times \mathcal{M}_{l} \rightarrow \mathbb{R}_{+},
$$

where:

- H is the closed half-disk (projective compactification of the half-plane);
- \mathcal{M}_{1} is the space of probability measures supported on an interval $I=[a, b] \subset \mathbb{R}_{+}$

What about symmetric means?

Fact: $\quad \operatorname{sym}_{k}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{hygm}_{k,-n}\left(x_{1}, \ldots, x_{n} ; \frac{1}{n}, \cdots, \frac{1}{n}\right)$
Despite $s<0$, the RHS makes sense, because:

- R_{k} is a polynomial in the x_{i} variables, and
- $R_{k}\left(-1, \ldots,-1 ; x_{1}, \ldots, x_{n}\right)>0$ if all $x_{i}>0$.

What about symmetric means?

Fact: $\quad \operatorname{sym}_{k}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{fiygm}_{k,-n}\left(x_{1}, \ldots, x_{n} ; \frac{1}{n}, \ldots, \frac{1}{n}\right)$
So the limit formula also works in this case ("below the horizon").

Matrix arguments?

B.-lommi-Ponce 2016 obtained the sym \rightarrow IfS law as a particular case of a "law of large permanents":

$$
\left(\frac{1}{n!} \operatorname{per}\left(A_{n}\right)\right)^{\frac{1}{n}} \rightarrow \text { "scaling mean" }
$$

(later improved by Balogh-Nguyen 2017) - that's a topic for another talk.

Question

Is this all of this part of something even bigger?

Matrix arguments?

B.-lommi-Ponce 2016 obtained the sym \rightarrow IfS law as a particular case of a "law of large permanents":

$$
\left(\frac{1}{n!} \operatorname{per}\left(A_{n}\right)\right)^{\frac{1}{n}} \rightarrow \text { "scaling mean" }
$$

(later improved by Balogh-Nguyen 2017) - that's a topic for another talk.

Question

Is this all of this part of something even bigger?

In an effort to symmetrize other classical hypergeometric functions, Carlson (1971) introduced a hypergeometric function \mathcal{R} of matrix argument. It turns out that the permanent is a particular case of the \mathcal{R} function.

