FURSTENBERG’S THEOREM ON PRODUCTS OF
I.I.D. 2 x 2 MATRICES

JATRO BOCHI

ABSTRACT. This is a revised version of some notes written > 10 years
ago. I thank Anthony Quas for pointing to a gap in the previous proof
of Lemma 5 and for providing a correct proof.

These notes follow [BL].

We deal with Lyapunov exponents of products of random i.i.d. 2 x 2 ma-
trices of determinant +1. Let SL4 (2, R) denote the group of such matrices.

Let p be a probability measure in SLy(2,R) which satisfies the integra-
bility condition’

| toglMl () < e,
SL+(2,R

If Y1, Ys, ...are random independent matrices with distribution g, then
the limit

1
v = lim —log ¥, Y1

(the upper Lyapunov exponent) exists a.s. and is constant, by the subaddi-
tive ergodic theorem. We have v = 0.

The Furstenberg theorem says that v > 0 for “most” choices of u. Let us
see some examples where v = O:

(1) If p is supported in the orthogonal group O(2) then v = 0.
(2) If p is supported in the abelian subgroup

{(é tﬂ) te R\{O}}

then v = (log | M| du(M), which may be zero.
(3) Assume that only two matrices occur:

2 0 0 1
<0 1/2) and Rﬂ/2:<—1 0)'

Then it is a simple exercise to show that v = 0.

Furstenberg’s theorem says that the list above essentially covers all pos-
sibilities where the exponent vanishes:

Date: May 9, 2016.
INote that |M|| = [M | =1 if M e SL+(2,R).
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2 FURSTENBERG’S THEOREM

Theorem. Let pu be as above, and let G, be the smallest closed subgroup
which contains the support of . Assume that:
(i) G, is non compact.
(ii) There is no finite set & # L < P! such that M(L) = L for all
Med,.

Then v > 0.

Remark. Condition (i) is equivalent to:

(i") There is no C' € GL(2,R) such that CMC~" is an orthogonal matrix,
for all M € G,.

Remark. Under the assumption (i), condition (ii) is equivalent to:

(ii’) There is no set L < P! with #L = 1 or 2 and such that M (L) = L
for all M € G,,.

(This follows from the fact that if M € SLi(2,R) fixes three different direc-
tions then M = 1I.)

NON-ATOMIC MEASURES IN P!

Let M(P!) be the space of probability Borel measures in P'. A measure
v e M(PY) is called non-atomic if v({z}) = 0 for all z € P'.
We collect some simple facts for later use.

If A e GL(2,R) then we also denote by A the induced map A: P! — P!,
If A in not invertible but A # 0 then there is only one direction = € P!
for which Az is not defined. In this case, it makes sense to consider the
push-forward Av e M(P'), if v € M(P!) is non-atomic.

Lemma 1. If v € M(P!) is non-atomic and A, is a sequence of non-zero
matrices converging to A # 0, then A,v — Av (weakly).

The proof is easy.
Lemma 2. If v € M(P!) is non-atomic then
H, ={MeSL(2,R); Mv =v}
is a compact subgroup of SLy(2,R).
Proof. Assume that there exists a sequence M,, in H, with ||M,| — oo.
Up to taking a subsequence, we may assume that the sequence (of norm 1

matrices) || M,||~'M,, converges to a matrix C. Since C' # 0, Lemma 1 gives

Cv = v. On the other hand,
1
detC =lim —— =
| M2

Thus C has rank one and v = Cv must be a Dirac measure, contradiction.
O
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[~-STATIONARY MEASURES IN P!

If v € M(P'), let the convolution uxv € M(P') is the push-forward of the
measure X v by the natural map ev: SLy(2,R) x P! — P!, If y#v = v then
v is called p-stationary. By a Krylov—Bogolioubov argument, p-stationary
measures always exist.

Lemma 3. If v satisfies the assumptions of Furstenberg’s theorem then
every p-stationary v € M(PY) is non-atomic.

Proof. Assume that
B = maxv({z}) >

zeP!

Let L = {x e P'; v({x}) = B}. If 29 € L then
— u({zo}) = (1) ({0}) = ﬂ Yooy (M) du(M) du(z)
_ j V(M (z0)}) du(M).

But v({M~*(z0)}) < 3 for all M, so v({M~(zq)}) < B for p-a.e. M. We
have proved that M~!(L) < L for pu-a.e. M. This contradicts assump-
tion (ii). O

From now on we assume that p satisfies the assumptions of Furstenberg’s
theorem, and that v is a (non-atomic) p-stationary measure in P!,

v AND 7

The shift o: SL4 (2, R)Y <= in the space of sequences w = (Y1, Ya,...) has
the ergodic invariant measure z!".
Consider the skew-product map T': SL4 (2, R)NxP! <, T'(w,z) = (o(w), Y1 (w)x).
Consider f: SL4(2,R)N x P! — R given by
Y1 (w)z|
f(w, l‘) = log W

(The notation is obvious). Then

[Yn(w) - - Yi(w)x|
]

—Zijwx)) nlog

by Oseledets’ theorem, for a.e. w and for all € P!\{E~(x)}, ? the quantity
on the right hand side tends to v as n — o0. In particular, this convergence
holds for N x v-a.e. (w,z). We conclude that

(1) dey du_ﬂlo U‘WT' (M) dv(x).

2E~(x) is the direction associated to the exponent —7, if y > 0.
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CONVERGENCE OF PUSH-FORWARD MEASURES
Let Sp(w) = Y1 (w) -+ Yo (w).
Lemma 4. For yMN-a.e. w, there exists v, € M(P') such that
Sp(w)v — v,.
Proof. Fix f € C(P!). Associate to f the function F': SL4(2,R) — R given
by
F(M) = ff(Ma:) dv(x).

Let F;, be the o-algebra of SL (2, R)YN formed by the cylinders of length
n; then S, (-) is F-measurable. Also

E(F(Sp+1) | Fo) = JF(SnM) dp(M)
:‘[fj(5hﬂ4x)du(ﬂf)dV($)

— Jf(Sny) dv(y) = F(Sy) (since p* v = p).

This shows that the sequence of functions w — F(S,(w)) is a bounded
martingale. Therefore the limit

Pf(w) = lim F(S,(w)

exists for a.e. w.

Now let fi; k€ N be a countable dense subset of C(P!). Take w in the
full-measure set where I' fy(w) exists for all k. Let v, be a (weak) limit point
of the sequence of measures Sy (w)v. Then

ffkd’/w_Ji_f&ffkd(Snl/)—Ji_r)roloffkosndu—I‘fk(w).

Since the limit is the same for all subsequences, we have in fact that S, (w)v —
V- O

Let’s explore the construction of the measures to obtain more information
about them:

Lemma 5. The measures v, from Lemma /4 satisfy
Sp(wW)Mv — v, asn — o for u-a.e. M.

Proof. We show that for any fixed fi from the sequence above that for
p-a.e. M, that § fr(Sp(w)Mz)dv(z) — § frdv,(z) for pN almost every
w. Let Fj: SL4(2,R) — R be the function introduced above correspond-
ing to fr. Given this, by taking the intersection over countably many
sets of full p-measure, we obtain a set of M’s of full measure on which
§ F(Sp(w)Mz)dv(z) — § fdv,(z) for pMN-a.e. w for all f e C(P), that is,
weak convergence of Sy, (w)Mv to v,,.
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We consider the expression

f[ ([ sisutnnta) ) - [ (st <>)2]du<M>,

where E denotes integration in the w variable with respect to p!.

We establish below that I < 0. From this is follows that the quantity in
the brackets is finite for yN-a.e. w and p-a.e. M It follows that for uN-a.e. w
and p-a.e. M, § fi,(Sp(w)Mz) dv(x ka )z) dv(z) — 0. However for
pN-a.e. w, we have § fi(Sn(w)x) dv(z) — ka ) dvy(z). Combining these,
we obtain the desired result.

To prove that I < oo, we note that

I= ZJ (Jfk w)Mz) dv(x ffk z) dv(zx )>2du(M).

Now define I,, by

= & ([ asa@toave) - [ as,) vt )>2du(M)

- JE(Fk(Sn(w)M) —Fk(Sn(w)) du(M)

_ f E(Fi(S0(w)M)? — 2F (S (@) M) Fy(Sn(w)) + Fi(Sn(w))? ) dp(M).

Notice that the distribution of conditional distribution of Sy41(w) given
Sp(w) is the same as that of S, (w)M. Hence

Ly = B Fie(Sn1(@))? = 2B4(Su 11 (@) Fu(Sn(@)) + (Fy(Su(w))?).

Notice
B (B (Sns10) Fil(Sn() ) = E(E(Fi(Sni10) (S ()| 7))
= E(Fu(Su(@)E(F(Sna @) Fa)
= E(Fi(Sn())*,

where we used the tower law for conditional expectations for the second
equality. Hence I, = EF}(Sp+1(w))? — EF)(S,(w))?. Now
N
I=1lim > I, = lim EF(Syi1(w)? —EF(S1(w)? <[ f]® O
1 N—o0

N—o

THE LIMIT MEASURES ARE DIRAC

Lemma 6. For uN-a.c. w, there exists Z(w) € P* such that v, = 0z(w)-

Proof. Fix a puMN-generic w. By Lemma 5 we have, for p-a.e. M,

lim S,,v = lim S,, M v.
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Let B be a limit point of the sequence of norm 1 matrices ||S,|~'S,. Since
|B| =1, we can apply Lemma 1:

Bv = BMv.

If B were invertible, this would imply v = Mv. That is, a.e. M belongs to
the compact group H, (see Lemma 2) and therefore G, ¢ H,,, contradicting
hypothesis (i). So B is non-invertible. Since Br = v, we conclude that v,
is Dirac. (]

CONVERGENCE TO DIRAC IMPLIES NORM GROWTH

Lemma 7. Let m € M(P!) be non-atomic and let (A,) be a sequence in
SL+(2,R) such that Aym — §,, where z € PL. Then

| An[ — oo.
Moreover, for all v e R?,
|43 )]
— Kv, 2).
| An|

Proof. We may assume that the sequence A, /|A,| converges to some B.
Since || B| = 1, we can apply Lemma 1 to conclude that Bm = d,. If B were
invertible then we would have that m = dg-1, would be atomic. Therefore

det B =0 and

1 An
o e

— |det B| = 0.
| Anl | Al

So [|Ap|| — 0.
Notice that the range of B must be the z direction.
Let vy, u, be unit vectors such that A,v, = |A,|u,. Then

An(vn)
Up = .
" Al
Since A,,/||An|| — B and ||B| = 1, we must have u,, — z (up to changing
signs). Moreover, u,, is the direction which is most expanded by A%. The
assertion follows. (For a more elegant proof, see [BL, p. 25].) O

CONVERGENCE TO 00 CANNOT BE SLOWER THAN EXPONENTIAL
We shall use the following abstract lemma from ergodic theory:

Lemma 8. Let T': (X, m) <« be a measure preserving transformation of a
probability space (X, m). If f € L'(m) is such that

n—1
Z f(T9z) = +o0  for m-almost every ,
j=0

then § f dp > 0.
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Proof. ~3 For any function g, let g denote the limit of Birkhoff averages of g.
Then f > 0. Assume, for a contradiction, that { f = 0. Then f =0 a.e.

Let s, = Z;:& foTI. For e >0, let

Ac={re X; sp(zr) =2eVn>=1} and B = U TF(A,).
k=0
Fix ¢ > 0 and let © € B.. Let k = k() = 0 be the least integer such that
T*z € A.. We compare the Birkhoff sums of f and x4,

n—1 k—1 n—1
DMHTI) = ) f(T92) + > exa (T72) Yn>1.
§=0 j=0 j=k

Dividing by n and making n — o0 we get

0= f(z) > e (@)
Therefore
M&%=%Z=fiz=&

€

Thus u(B:) = 0 for every € > 0 as well.
On the other hand, if s,,(x) — o then z € | J.., B-. We have obtained a
contradiction. O

End of the proof of the theorem. Replace everywhere Y; by Y;*. Note that
p* also satisfies the hypothesis of the theorem if 1 does.*
Let T and f be as in page 3. By Lemmas 6 and 7 we have

3 (T 0.2)) = log 2]
P o]
for a.e. w and all z € P'\{Z(w)*}. In particular, convergence holds u x v-
a.e. By Lemma 8, this implies § f > 0. Then, by (1), v > 0. (]
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3This proof is a bit simpler than that in [131)].
4Because A(v) = w = A*(wt) = vt
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