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Abstract. This is a revised version of some notes written ą 10 years
ago. I thank Anthony Quas for pointing to a gap in the previous proof
of Lemma 5 and for providing a correct proof.

These notes follow [BL].
We deal with Lyapunov exponents of products of random i.i.d. 2ˆ 2 ma-

trices of determinant ˘1. Let SL˘p2,Rq denote the group of such matrices.
Let µ be a probability measure in SL˘p2,Rq which satisfies the integra-

bility condition1
ż

SL˘p2,Rq
log }M} dµpMq ă 8.

If Y1, Y2, . . . are random independent matrices with distribution µ, then
the limit

γ “ lim
nÑ8

1

n
log }Yn ¨ ¨ ¨Y1}

(the upper Lyapunov exponent) exists a.s. and is constant, by the subaddi-
tive ergodic theorem. We have γ ě 0.

The Furstenberg theorem says that γ ą 0 for “most” choices of µ. Let us
see some examples where γ “ 0:

(1) If µ is supported in the orthogonal group Op2q then γ “ 0.
(2) If µ is supported in the abelian subgroup

"ˆ

t 0
0 t´1

˙

; t P Rzt0u
*

then γ “
ş

log }M} dµpMq, which may be zero.
(3) Assume that only two matrices occur:

ˆ

2 0
0 1{2

˙

and Rπ{2 “

ˆ

0 1
´1 0

˙

.

Then it is a simple exercise to show that γ “ 0.

Furstenberg’s theorem says that the list above essentially covers all pos-
sibilities where the exponent vanishes:
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1Note that }M} “ }M´1

} ě 1 if M P SL˘p2,Rq.
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Theorem. Let µ be as above, and let Gµ be the smallest closed subgroup
which contains the support of µ. Assume that:

(i) Gµ is non compact.
(ii) There is no finite set H ‰ L Ă P1 such that MpLq “ L for all

M P Gµ.

Then γ ą 0.

Remark. Condition (i) is equivalent to:

(i’) There is no C P GLp2,Rq such that CMC´1 is an orthogonal matrix,
for all M P Gµ.

Remark. Under the assumption (i), condition (ii) is equivalent to:

(ii’) There is no set L Ă P1 with #L “ 1 or 2 and such that MpLq “ L
for all M P Gµ.

(This follows from the fact that if M P SL˘p2,Rq fixes three different direc-
tions then M “ I.)

Non-atomic measures in P1

Let MpP1q be the space of probability Borel measures in P1. A measure
ν PMpP1q is called non-atomic if νptxuq “ 0 for all x P P1.

We collect some simple facts for later use.

If A P GLp2,Rq then we also denote by A the induced map A : P1 Ñ P1.
If A in not invertible but A ‰ 0 then there is only one direction x P P1

for which Ax is not defined. In this case, it makes sense to consider the
push-forward Aν PMpP1q, if ν PMpP1q is non-atomic.

Lemma 1. If ν P MpP1q is non-atomic and An is a sequence of non-zero
matrices converging to A ‰ 0, then Anν Ñ Aν (weakly).

The proof is easy.

Lemma 2. If ν PMpP1q is non-atomic then

Hν “ tM P SL˘p2,Rq; Mν “ νu

is a compact subgroup of SL˘p2,Rq.

Proof. Assume that there exists a sequence Mn in Hν with }Mn} Ñ 8.
Up to taking a subsequence, we may assume that the sequence (of norm 1
matrices) }Mn}

´1Mn converges to a matrix C. Since C ‰ 0, Lemma 1 gives
Cν “ ν. On the other hand,

detC “ lim
1

}Mn}
2
“ 0.

Thus C has rank one and ν “ Cν must be a Dirac measure, contradiction.
�
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µ-stationary measures in P1

If ν PMpP1q, let the convolution µ˚ν PMpP1q is the push-forward of the
measure µˆν by the natural map ev : SL˘p2,RqˆP1 Ñ P1. If µ˚ν “ ν then
ν is called µ-stationary. By a Krylov–Bogolioubov argument, µ-stationary
measures always exist.

Lemma 3. If µ satisfies the assumptions of Furstenberg’s theorem then
every µ-stationary ν PMpP1q is non-atomic.

Proof. Assume that

β “ max
xPP1

νptxuq ą 0.

Let L “ tx P P1; νptxuq “ βu. If x0 P L then

β “ νptx0uq “ pµ ˚ νqptx0uq “

ĳ

χtx0upMxq dµpMq dνpxq

“

ż

νptM´1px0quq dµpMq.

But νptM´1px0quq ď β for all M , so νptM´1px0quq ď β for µ-a.e. M . We
have proved that M´1pLq Ă L for µ-a.e. M . This contradicts assump-
tion (ii). �

From now on we assume that µ satisfies the assumptions of Furstenberg’s
theorem, and that ν is a (non-atomic) µ-stationary measure in P1.

ν and γ

The shift σ : SL˘p2,RqN Ðâ in the space of sequences ω “ pY1, Y2, . . .q has
the ergodic invariant measure µN.

Consider the skew-product map T : SL˘p2,RqNˆP1 Ðâ, T pω, xq “ pσpωq, Y1pωqxq.
Consider f : SL˘p2,RqN ˆ P1 Ñ R given by

fpω, xq “ log
}Y1pωqx}

}x}
.

(The notation is obvious). Then

1

n

n
ÿ

j“0

fpT jpω, xqq “
1

n
log

}Ynpωq ¨ ¨ ¨Y1pωqx}

}x}
.

by Oseledets’ theorem, for a.e. ω and for all x P P1ztE´pxqu, 2 the quantity
on the right hand side tends to γ as nÑ8. In particular, this convergence
holds for µN ˆ ν-a.e. pω, xq. We conclude that

(1) γ “

ĳ

f dµN dν “

ĳ

log
}Mx}

}x}
dµpMq dνpxq.

2E´pxq is the direction associated to the exponent ´γ, if γ ą 0.
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Convergence of push-forward measures

Let Snpωq “ Y1pωq ¨ ¨ ¨Ynpωq.

Lemma 4. For µN-a.e. ω, there exists νω PMpP1q such that

Snpωqν Ñ νω.

Proof. Fix f P CpP1q. Associate to f the function F : SL˘p2,Rq Ñ R given
by

F pMq “

ż

fpMxq dνpxq.

Let Fn be the σ-algebra of SL˘p2,RqN formed by the cylinders of length
n; then Snp¨q is Fn-measurable. Also

EpF pSn`1q | Fnq “
ż

F pSnMq dµpMq

“

ĳ

fpSnMxq dµpMq dνpxq

“

ż

fpSnyq dνpyq “ F pSnq (since µ ˚ ν “ µ).

This shows that the sequence of functions ω ÞÑ F pSnpωqq is a bounded
martingale. Therefore the limit

Γfpωq “ lim
nÑ8

F pSnpωqq

exists for a.e. ω.
Now let fk; k P N be a countable dense subset of CpP1q. Take ω in the

full-measure set where Γfkpωq exists for all k. Let νω be a (weak) limit point
of the sequence of measures Snpωqν. Then

ż

fk dνω “ lim
nÑ8

ż

fk dpSnνq “ lim
nÑ8

ż

fk ˝ Sn dν “ Γfkpωq.

Since the limit is the same for all subsequences, we have in fact that Snpωqν Ñ
νω. �

Let’s explore the construction of the measures to obtain more information
about them:

Lemma 5. The measures νω from Lemma 4 satisfy

SnpωqMν Ñ νω as nÑ8 for µ-a.e. M .

Proof. We show that for any fixed fk from the sequence above that for
µ-a.e. M , that

ş

fkpSnpωqMxq dνpxq Ñ
ş

fk dνωpxq for µN almost every
ω. Let Fk : SL˘p2,Rq Ñ R be the function introduced above correspond-
ing to fk. Given this, by taking the intersection over countably many
sets of full µ-measure, we obtain a set of M ’s of full measure on which
ş

fpSnpωqMxq dνpxq Ñ
ş

f dνωpxq for µN-a.e. ω for all f P CpP1q, that is,
weak convergence of SnpωqMν to νω.
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We consider the expression

I “

ż

E

«

8
ÿ

n“1

ˆ
ż

fkpSnpωqMxq dνpxq ´

ż

fkpSnpωqxq dνpxq

˙2
ff

dµpMq,

where E denotes integration in the ω variable with respect to µN.
We establish below that I ă 8. From this is follows that the quantity in

the brackets is finite for µN-a.e. ω and µ-a.e. M . It follows that for µN-a.e. ω
and µ-a.e. M ,

ş

fkpSnpωqMxq dνpxq ´
ş

fkpSnpωqxq dνpxq Ñ 0. However for

µN-a.e. ω, we have
ş

fkpSnpωqxq dνpxq Ñ
ş

fkpxq dνωpxq. Combining these,
we obtain the desired result.

To prove that I ă 8, we note that

I “
8
ÿ

n“1

ż

E
ˆ
ż

fkpSnpωqMxq dνpxq ´

ż

fkpSnpωqxq dνpxq

˙2

dµpMq.

Now define In by

In “

ż

E
ˆ
ż

fkpSnpωqMxq dνpxq ´

ż

fkpSnpωqxq dνpxq

˙2

dµpMq

“

ż

E
´

FkpSnpωqMq ´ FkpSnpωq
¯2
dµpMq

“

ż

E
´

FkpSnpωqMq
2 ´ 2FkpSnpωqMqFkpSnpωqq ` FkpSnpωqq

2
¯

dµpMq.

Notice that the distribution of conditional distribution of Sn`1pωq given
Snpωq is the same as that of SnpωqM . Hence

In “ E
´

FkpSn`1pωqq
2 ´ 2FkpSn`1pωqqFkpSnpωqq ` pFkpSnpωqq

2
¯

.

Notice

E
´

FkpSn`1ωqFkpSnpωq
¯

“ E
´

E
´

FkpSn`1ωqFkpSnpωq
ˇ

ˇ

ˇ
Fn

¯¯

“ E
´

FkpSnpωqqEpFkpSn`1pωqq|Fnq
¯

“ EpFkpSnpωqq2,

where we used the tower law for conditional expectations for the second
equality. Hence In “ EFkpSn`1pωqq2 ´ EFkpSnpωqq2. Now

I “ lim
NÑ8

N
ÿ

n“1

In “ lim
NÑ8

EFkpSN`1pωqq2 ´ EFkpS1pωqq2 ď }fk}2. �

The limit measures are Dirac

Lemma 6. For µN-a.e. ω, there exists Zpωq P P1 such that νω “ δZpωq.

Proof. Fix a µN-generic ω. By Lemma 5 we have, for µ-a.e. M ,

limSnν “ limSnMν.



6 FURSTENBERG’S THEOREM

Let B be a limit point of the sequence of norm 1 matrices }Sn}
´1Sn. Since

}B} “ 1, we can apply Lemma 1:

Bν “ BMν.

If B were invertible, this would imply ν “Mν. That is, a.e. M belongs to
the compact group Hν (see Lemma 2) and therefore Gν Ă Hν , contradicting
hypothesis (i). So B is non-invertible. Since Bν “ νω, we conclude that νω
is Dirac. �

Convergence to Dirac implies norm growth

Lemma 7. Let m P MpP1q be non-atomic and let pAnq be a sequence in
SL˘p2,Rq such that AnmÑ δz, where z P P1. Then

}An} Ñ 8.

Moreover, for all v P R2,

}A˚npvq}

}An}
Ñ |xv, zy|.

Proof. We may assume that the sequence An{}An} converges to some B.
Since }B} “ 1, we can apply Lemma 1 to conclude that Bm “ δz. If B were
invertible then we would have that m “ δB´1z would be atomic. Therefore
detB “ 0 and

1

}An}2
“

ˇ

ˇ

ˇ

ˇ

det
An
}An}

ˇ

ˇ

ˇ

ˇ

Ñ |detB| “ 0.

So }An} Ñ 8.
Notice that the range of B must be the z direction.
Let vn, un be unit vectors such that Anvn “ }An}un. Then

un “
Anpvnq

}An}
.

Since An{}An} Ñ B and }B} “ 1, we must have un Ñ z (up to changing
signs). Moreover, un is the direction which is most expanded by A˚n. The
assertion follows. (For a more elegant proof, see [BL, p. 25].) �

Convergence to 8 cannot be slower than exponential

We shall use the following abstract lemma from ergodic theory:

Lemma 8. Let T : pX,mq Ðâ be a measure preserving transformation of a
probability space pX,mq. If f P L1pmq is such that

n´1
ÿ

j“0

fpT jxq “ `8 for m-almost every x,

then
ş

f dµ ą 0.



FURSTENBERG’S THEOREM 7

Proof. 3 For any function g, let g̃ denote the limit of Birkhoff averages of g.
Then f̃ ě 0. Assume, for a contradiction, that

ş

f “ 0. Then f̃ “ 0 a.e.

Let sn “
řn´1
j“0 f ˝ T

j . For ε ą 0, let

Aε “ tx P X; snpxq ě ε @n ě 1u and Bε “
ď

kě0

T´kpAεq.

Fix ε ą 0 and let x P Bε. Let k “ kpxq ě 0 be the least integer such that
T kx P Aε. We compare the Birkhoff sums of f and χAε :

n´1
ÿ

j“0

fpT jxq ě
k´1
ÿ

j“0

fpT jxq `
n´1
ÿ

j“k

εχAεpT
jxq @n ě 1.

Dividing by n and making nÑ8 we get

0 “ f̃pxq ě εĄχAεpxq

Therefore

µpAεq “

ż

ĄχAε “

ż

Bε

ĄχAε “ 0.

Thus µpBεq “ 0 for every ε ą 0 as well.
On the other hand, if snpxq Ñ 8 then x P

Ť

εą0Bε. We have obtained a
contradiction. �

End of the proof of the theorem. Replace everywhere Yi by Y ˚i . Note that
µ˚ also satisfies the hypothesis of the theorem if µ does.4

Let T and f be as in page 3. By Lemmas 6 and 7 we have
n
ÿ

j“0

fpT jpω, xqq “ log
}S˚npωqx}

}x}
Ñ 8

for a.e. ω and all x P P1ztZpωqKu. In particular, convergence holds µN ˆ ν-
a.e. By Lemma 8, this implies

ş

f ą 0. Then, by (1), γ ą 0. �
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