FURSTENBERG'S THEOREM ON PRODUCTS OF I.I.D. 2×2 MATRICES

JAIRO BOCHI

ABSTRACT. This is a revised version of some notes written > 10 years ago. I thank Anthony Quas for pointing to a gap in the previous proof of Lemma 5 and for providing a correct proof.

These notes follow [BL].

We deal with Lyapunov exponents of products of random i.i.d. 2×2 matrices of determinant ± 1 . Let $SL_+(2, \mathbb{R})$ denote the group of such matrices.

Let μ be a probability measure in $SL_{\pm}(2,\mathbb{R})$ which satisfies the integrability condition¹

$$\int_{\mathrm{SL}_{\pm}(2,\mathbb{R})} \log \|M\| \, d\mu(M) < \infty.$$

If Y_1, Y_2, \ldots are random independent matrices with distribution μ , then the limit

$$\gamma = \lim_{n \to \infty} \frac{1}{n} \log \|Y_n \cdots Y_1\|$$

(the upper Lyapunov exponent) exists a.s. and is constant, by the subadditive ergodic theorem. We have $\gamma \ge 0$.

The Furstenberg theorem says that $\gamma > 0$ for "most" choices of μ . Let us see some examples where $\gamma = 0$:

(1) If μ is supported in the orthogonal group O(2) then $\gamma = 0$.

(2) If μ is supported in the abelian subgroup

$$\left\{ \begin{pmatrix} t & 0\\ 0 & t^{-1} \end{pmatrix}; \ t \in \mathbb{R} \setminus \{0\} \right\}$$

then $\gamma = \int \log \|M\| d\mu(M)$, which may be zero. (3) Assume that only two matrices occur:

$$\begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$$
 and $R_{\pi/2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Then it is a simple exercise to show that $\gamma = 0$.

Furstenberg's theorem says that the list above essentially covers all possibilities where the exponent vanishes:

Date: May 9, 2016.

¹Note that
$$||M|| = ||M^{-1}|| \ge 1$$
 if $M \in SL_{\pm}(2, \mathbb{R})$.

Theorem. Let μ be as above, and let G_{μ} be the smallest closed subgroup which contains the support of μ . Assume that:

- (i) G_{μ} is non compact.
- (ii) There is no finite set $\emptyset \neq L \subset \mathbb{P}^1$ such that M(L) = L for all $M \in G_{\mu}$.

Then $\gamma > 0$.

Remark. Condition (i) is equivalent to:

(i') There is no $C \in GL(2, \mathbb{R})$ such that CMC^{-1} is an orthogonal matrix, for all $M \in G_{\mu}$.

Remark. Under the assumption (i), condition (ii) is equivalent to:

(ii') There is no set $L \subset \mathbb{P}^1$ with #L = 1 or 2 and such that M(L) = L for all $M \in G_{\mu}$.

(This follows from the fact that if $M \in SL_{\pm}(2, \mathbb{R})$ fixes three different directions then M = I.)

Non-atomic measures in \mathbb{P}^1

Let $\mathcal{M}(\mathbb{P}^1)$ be the space of probability Borel measures in \mathbb{P}^1 . A measure $\nu \in \mathcal{M}(\mathbb{P}^1)$ is called *non-atomic* if $\nu(\{x\}) = 0$ for all $x \in \mathbb{P}^1$.

We collect some simple facts for later use.

If $A \in \operatorname{GL}(2, \mathbb{R})$ then we also denote by A the induced map $A \colon \mathbb{P}^1 \to \mathbb{P}^1$. If A in not invertible but $A \neq 0$ then there is only one direction $x \in \mathbb{P}^1$ for which Ax is not defined. In this case, it makes sense to consider the push-forward $A\nu \in \mathcal{M}(\mathbb{P}^1)$, if $\nu \in \mathcal{M}(\mathbb{P}^1)$ is non-atomic.

Lemma 1. If $\nu \in \mathcal{M}(\mathbb{P}^1)$ is non-atomic and A_n is a sequence of non-zero matrices converging to $A \neq 0$, then $A_n\nu \to A\nu$ (weakly).

The proof is easy.

Lemma 2. If $\nu \in \mathcal{M}(\mathbb{P}^1)$ is non-atomic then

$$H_{\nu} = \{ M \in \mathrm{SL}_+(2,\mathbb{R}); \ M\nu = \nu \}$$

is a compact subgroup of $SL_+(2, \mathbb{R})$.

Proof. Assume that there exists a sequence M_n in H_{ν} with $||M_n|| \to \infty$. Up to taking a subsequence, we may assume that the sequence (of norm 1 matrices) $||M_n||^{-1}M_n$ converges to a matrix C. Since $C \neq 0$, Lemma 1 gives $C\nu = \nu$. On the other hand,

$$\det C = \lim \frac{1}{\|M_n\|^2} = 0.$$

Thus C has rank one and $\nu = C\nu$ must be a Dirac measure, contradiction.

μ -stationary measures in \mathbb{P}^1

If $\nu \in \mathcal{M}(\mathbb{P}^1)$, let the *convolution* $\mu * \nu \in \mathcal{M}(\mathbb{P}^1)$ is the push-forward of the measure $\mu \times \nu$ by the natural map ev: $\mathrm{SL}_{\pm}(2,\mathbb{R}) \times \mathbb{P}^1 \to \mathbb{P}^1$. If $\mu * \nu = \nu$ then ν is called μ -stationary. By a Krylov–Bogolioubov argument, μ -stationary measures always exist.

Lemma 3. If μ satisfies the assumptions of Furstenberg's theorem then every μ -stationary $\nu \in \mathcal{M}(\mathbb{P}^1)$ is non-atomic.

Proof. Assume that

$$\beta = \max_{x \in \mathbb{P}^1} \nu(\{x\}) > 0.$$

Let $L = \{x \in \mathbb{P}^1; \ \nu(\{x\}) = \beta\}$. If $x_0 \in L$ then

$$\beta = \nu(\{x_0\}) = (\mu * \nu)(\{x_0\}) = \iint \chi_{\{x_0\}}(Mx) \, d\mu(M) \, d\nu(x)$$
$$= \int \nu(\{M^{-1}(x_0)\}) \, d\mu(M)$$

But $\nu(\{M^{-1}(x_0)\}) \leq \beta$ for all M, so $\nu(\{M^{-1}(x_0)\}) \leq \beta$ for μ -a.e. M. We have proved that $M^{-1}(L) \subset L$ for μ -a.e. M. This contradicts assumption (ii).

From now on we assume that μ satisfies the assumptions of Furstenberg's theorem, and that ν is a (non-atomic) μ -stationary measure in \mathbb{P}^1 .

u and γ

The shift $\sigma: \operatorname{SL}_{\pm}(2,\mathbb{R})^{\mathbb{N}} \hookrightarrow$ in the space of sequences $\omega = (Y_1, Y_2, \ldots)$ has the ergodic invariant measure $\mu^{\mathbb{N}}$.

Consider the skew-product map $T: \mathrm{SL}_{\pm}(2,\mathbb{R})^{\mathbb{N}} \times \mathbb{P}^1 \longleftrightarrow, T(\omega, x) = (\sigma(\omega), Y_1(\omega)x).$ Consider $f: \mathrm{SL}_{\pm}(2,\mathbb{R})^{\mathbb{N}} \times \mathbb{P}^1 \to \mathbb{R}$ given by

$$f(\omega, x) = \log \frac{\|Y_1(\omega)x\|}{\|x\|}.$$

(The notation is obvious). Then

$$\frac{1}{n} \sum_{j=0}^{n} f(T^{j}(\omega, x)) = \frac{1}{n} \log \frac{\|Y_{n}(\omega) \cdots Y_{1}(\omega)x\|}{\|x\|}.$$

by Oseledets' theorem, for a.e. ω and for all $x \in \mathbb{P}^1 \setminus \{E^-(x)\}$, ² the quantity on the right hand side tends to γ as $n \to \infty$. In particular, this convergence holds for $\mu^{\mathbb{N}} \times \nu$ -a.e. (ω, x) . We conclude that

(1)
$$\gamma = \iint f \, d\mu^{\mathbb{N}} \, d\nu = \iint \log \frac{\|Mx\|}{\|x\|} \, d\mu(M) \, d\nu(x).$$

 $^{^{2}}E^{-}(x)$ is the direction associated to the exponent $-\gamma$, if $\gamma > 0$.

CONVERGENCE OF PUSH-FORWARD MEASURES

Let $S_n(\omega) = Y_1(\omega) \cdots Y_n(\omega)$.

Lemma 4. For $\mu^{\mathbb{N}}$ -a.e. ω , there exists $\nu_{\omega} \in \mathcal{M}(\mathbb{P}^1)$ such that

$$S_n(\omega)\nu \to \nu_\omega$$

Proof. Fix $f \in C(\mathbb{P}^1)$. Associate to f the function $F: SL_{\pm}(2, \mathbb{R}) \to \mathbb{R}$ given by

$$F(M) = \int f(Mx) \, d\nu(x).$$

Let \mathcal{F}_n be the σ -algebra of $\mathrm{SL}_{\pm}(2,\mathbb{R})^{\mathbb{N}}$ formed by the cylinders of length n; then $S_n(\cdot)$ is \mathcal{F}_n -measurable. Also

$$\mathbb{E}(F(S_{n+1}) \mid \mathcal{F}_n) = \int F(S_n M) \, d\mu(M)$$
$$= \iint f(S_n M x) \, d\mu(M) \, d\nu(x)$$
$$= \int f(S_n y) \, d\nu(y) = F(S_n) \qquad (\text{since } \mu * \nu = \mu)$$

This shows that the sequence of functions $\omega \mapsto F(S_n(\omega))$ is a bounded martingale. Therefore the limit

$$\Gamma f(\omega) = \lim_{n \to \infty} F(S_n(\omega))$$

exists for a.e. ω .

Now let f_k ; $k \in \mathbb{N}$ be a countable dense subset of $C(\mathbb{P}^1)$. Take ω in the full-measure set where $\Gamma f_k(\omega)$ exists for all k. Let ν_{ω} be a (weak) limit point of the sequence of measures $S_n(\omega)\nu$. Then

$$\int f_k \, d\nu_\omega = \lim_{n \to \infty} \int f_k \, d(S_n \nu) = \lim_{n \to \infty} \int f_k \circ S_n \, d\nu = \Gamma f_k(\omega).$$

Since the limit is the same for all subsequences, we have in fact that $S_n(\omega)\nu \rightarrow \nu_{\omega}$.

Let's explore the construction of the measures to obtain more information about them:

Lemma 5. The measures ν_{ω} from Lemma 4 satisfy

$$S_n(\omega)M\nu \to \nu_\omega$$
 as $n \to \infty$ for μ -a.e. M.

Proof. We show that for any fixed f_k from the sequence above that for μ -a.e. M, that $\int f_k(S_n(\omega)Mx) d\nu(x) \to \int f_k d\nu_\omega(x)$ for $\mu^{\mathbb{N}}$ almost every ω . Let $F_k \colon \mathrm{SL}_{\pm}(2,\mathbb{R}) \to \mathbb{R}$ be the function introduced above corresponding to f_k . Given this, by taking the intersection over countably many sets of full μ -measure, we obtain a set of M's of full measure on which $\int f(S_n(\omega)Mx) d\nu(x) \to \int f d\nu_\omega(x)$ for $\mu^{\mathbb{N}}$ -a.e. ω for all $f \in C(\mathbb{P}^1)$, that is, weak convergence of $S_n(\omega)M\nu$ to ν_ω .

We consider the expression

$$I = \int \mathbb{E}\left[\sum_{n=1}^{\infty} \left(\int f_k(S_n(\omega)Mx) \, d\nu(x) - \int f_k(S_n(\omega)x) \, d\nu(x)\right)^2\right] d\mu(M),$$

where \mathbb{E} denotes integration in the ω variable with respect to $\mu^{\mathbb{N}}$.

We establish below that $I < \infty$. From this is follows that the quantity in the brackets is finite for $\mu^{\mathbb{N}}$ -a.e. ω and μ -a.e. M. It follows that for $\mu^{\mathbb{N}}$ -a.e. ω and μ -a.e. M, $\int f_k(S_n(\omega)Mx) d\nu(x) - \int f_k(S_n(\omega)x) d\nu(x) \to 0$. However for $\mu^{\mathbb{N}}$ -a.e. ω , we have $\int f_k(S_n(\omega)x) d\nu(x) \to \int f_k(x) d\nu_{\omega}(x)$. Combining these, we obtain the desired result.

To prove that $I < \infty$, we note that

$$I = \sum_{n=1}^{\infty} \int \mathbb{E} \left(\int f_k(S_n(\omega)Mx) \, d\nu(x) - \int f_k(S_n(\omega)x) \, d\nu(x) \right)^2 d\mu(M).$$

Now define I_n by

$$I_n = \int \mathbb{E} \left(\int f_k(S_n(\omega)Mx) \, d\nu(x) - \int f_k(S_n(\omega)x) \, d\nu(x) \right)^2 d\mu(M)$$

= $\int \mathbb{E} \left(F_k(S_n(\omega)M) - F_k(S_n(\omega))^2 \, d\mu(M) \right)$
= $\int \mathbb{E} \left(F_k(S_n(\omega)M)^2 - 2F_k(S_n(\omega)M)F_k(S_n(\omega)) + F_k(S_n(\omega))^2 \right) d\mu(M).$

Notice that the distribution of conditional distribution of $S_{n+1}(\omega)$ given $S_n(\omega)$ is the same as that of $S_n(\omega)M$. Hence

$$I_n = \mathbb{E}\Big(F_k(S_{n+1}(\omega))^2 - 2F_k(S_{n+1}(\omega))F_k(S_n(\omega)) + (F_k(S_n(\omega))^2\Big).$$

Notice

$$\mathbb{E}\Big(F_k(S_{n+1}\omega)F_k(S_n(\omega)\Big) = \mathbb{E}\Big(\mathbb{E}\Big(F_k(S_{n+1}\omega)F_k(S_n(\omega)\Big|\mathcal{F}_n\Big)\Big)$$
$$= \mathbb{E}\Big(F_k(S_n(\omega))\mathbb{E}(F_k(S_{n+1}(\omega))|\mathcal{F}_n)\Big)$$
$$= \mathbb{E}(F_k(S_n(\omega))^2,$$

where we used the tower law for conditional expectations for the second equality. Hence $I_n = \mathbb{E}F_k(S_{n+1}(\omega))^2 - \mathbb{E}F_k(S_n(\omega))^2$. Now

$$I = \lim_{N \to \infty} \sum_{n=1}^{N} I_n = \lim_{N \to \infty} \mathbb{E}F_k(S_{N+1}(\omega))^2 - \mathbb{E}F_k(S_1(\omega))^2 \leq ||f_k||^2. \quad \Box$$

The limit measures are Dirac

Lemma 6. For $\mu^{\mathbb{N}}$ -a.e. ω , there exists $Z(\omega) \in \mathbb{P}^1$ such that $\nu_{\omega} = \delta_{Z(\omega)}$.

Proof. Fix a $\mu^{\mathbb{N}}$ -generic ω . By Lemma 5 we have, for μ -a.e. M,

 $\lim S_n \nu = \lim S_n M \nu.$

Let B be a limit point of the sequence of norm 1 matrices $||S_n||^{-1}S_n$. Since ||B|| = 1, we can apply Lemma 1:

$$B\nu = BM\nu.$$

If B were invertible, this would imply $\nu = M\nu$. That is, a.e. M belongs to the compact group H_{ν} (see Lemma 2) and therefore $G_{\nu} \subset H_{\nu}$, contradicting hypothesis (i). So B is non-invertible. Since $B\nu = \nu_{\omega}$, we conclude that ν_{ω} is Dirac.

CONVERGENCE TO DIRAC IMPLIES NORM GROWTH

Lemma 7. Let $m \in \mathcal{M}(\mathbb{P}^1)$ be non-atomic and let (A_n) be a sequence in $SL_{\pm}(2,\mathbb{R})$ such that $A_nm \to \delta_z$, where $z \in \mathbb{P}^1$. Then

$$||A_n|| \to \infty.$$

Moreover, for all $v \in \mathbb{R}^2$,

$$\frac{\|A_n^*(v)\|}{\|A_n\|} \to |\langle v, z \rangle|.$$

Proof. We may assume that the sequence $A_n/||A_n||$ converges to some B. Since ||B|| = 1, we can apply Lemma 1 to conclude that $Bm = \delta_z$. If B were invertible then we would have that $m = \delta_{B^{-1}z}$ would be atomic. Therefore det B = 0 and

$$\frac{1}{\|A_n\|^2} = \left|\det \frac{A_n}{\|A_n\|}\right| \to |\det B| = 0.$$

So $||A_n|| \to \infty$.

Notice that the range of B must be the z direction.

Let v_n , u_n be unit vectors such that $A_n v_n = ||A_n||u_n$. Then

$$u_n = \frac{A_n(v_n)}{\|A_n\|}.$$

Since $A_n/||A_n|| \to B$ and ||B|| = 1, we must have $u_n \to z$ (up to changing signs). Moreover, u_n is the direction which is most expanded by A_n^* . The assertion follows. (For a more elegant proof, see [BL, p. 25].)

Convergence to ∞ cannot be slower than exponential

We shall use the following abstract lemma from ergodic theory:

Lemma 8. Let $T: (X,m) \leftarrow be$ a measure preserving transformation of a probability space (X,m). If $f \in L^1(m)$ is such that

$$\sum_{j=0}^{n-1} f(T^j x) = +\infty \quad \text{for m-almost every } x,$$

then $\int f d\mu > 0$.

Proof. ³ For any function g, let \tilde{g} denote the limit of Birkhoff averages of g. Then $\tilde{f} \ge 0$. Assume, for a contradiction, that $\int f = 0$. Then $\tilde{f} = 0$ a.e. Let $s_n = \sum_{j=0}^{n-1} f \circ T^j$. For $\varepsilon > 0$, let

$$A_{\varepsilon} = \{x \in X; \ s_n(x) \ge \varepsilon \ \forall n \ge 1\}$$
 and $B_{\varepsilon} = \bigcup_{k \ge 0} T^{-k}(A_{\varepsilon})$

Fix $\varepsilon > 0$ and let $x \in B_{\varepsilon}$. Let $k = k(x) \ge 0$ be the least integer such that $T^k x \in A_{\varepsilon}$. We compare the Birkhoff sums of f and $\chi_{A_{\varepsilon}}$:

$$\sum_{j=0}^{n-1} f(T^j x) \ge \sum_{j=0}^{k-1} f(T^j x) + \sum_{j=k}^{n-1} \varepsilon \chi_{A_{\varepsilon}}(T^j x) \quad \forall n \ge 1.$$

Dividing by n and making $n \to \infty$ we get

$$0 = \tilde{f}(x) \ge \varepsilon \widetilde{\chi_{A_{\varepsilon}}}(x)$$

Therefore

$$\mu(A_{\varepsilon}) = \int \widetilde{\chi_{A_{\varepsilon}}} = \int_{B_{\varepsilon}} \widetilde{\chi_{A_{\varepsilon}}} = 0.$$

Thus $\mu(B_{\varepsilon}) = 0$ for every $\varepsilon > 0$ as well.

On the other hand, if $s_n(x) \to \infty$ then $x \in \bigcup_{\varepsilon > 0} B_{\varepsilon}$. We have obtained a contradiction.

End of the proof of the theorem. Replace everywhere Y_i by Y_i^* . Note that μ^* also satisfies the hypothesis of the theorem if μ does.⁴

Let T and f be as in page 3. By Lemmas 6 and 7 we have

$$\sum_{j=0}^{n} f(T^{j}(\omega, x)) = \log \frac{\|S_{n}^{*}(\omega)x\|}{\|x\|} \to \infty$$

for a.e. ω and all $x \in \mathbb{P}^1 \setminus \{Z(\omega)^{\perp}\}$. In particular, convergence holds $\mu^{\mathbb{N}} \times \nu$ a.e. By Lemma 8, this implies $\int f > 0$. Then, by (1), $\gamma > 0$.

References

- [BL] P. Bougerol and J. Lacroix. Products of random matrices with applications to Schrödinger operators. Birkhäuser, 1985.
- [F] H. Furstenberg. Non-commuting random products. Trans. AMS, 108: 377–428, 1963.

³This proof is a bit simpler than that in [BL].

⁴Because $A(v) = w \Rightarrow A^*(w^{\perp}) = v^{\perp}$.