Birkhoff 00000000 Mañé 00000000 Lyapunov

Extremal norms for fiber-bunched cocycles

Jairo Bochi (PUC-Chile)

Topics in Mathematical Physics, São Paulo

July 31, 2018

Revised on January, 2019

General setting for the talk

- *X* = compact metric space
- $T: X \rightarrow X$ continuous map
- *M_T* := set of *T*-invariant Borel probability measures (compact convex)
- $\mathcal{M}_{\mathcal{T}}^{erg} \coloneqq$ subset of ergodic measures = ext($\mathcal{M}_{\mathcal{T}}$).

Part 1

Commutative ergodic optimization: Birkhoff averages

References: Surveys by O. Jenkinson.

- *Ergodic Optimization*, Discrete and Cont. Dyn. Sys. A, vol. 15 (2006), pp. 197–224.
- Ergodic Optimization in Dynamical Systems, Ergodic Theory Dynam. Systems (2018; online)

Apology / Disclaimer: I won't discuss relations with Lagrangian Mechanics, nor <u>Thermodynamical</u> Formalism.

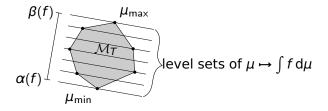
Birkhoff o●oooooo Mañé 00000000 Lyapunov

Ergodic optimization of Birkhoff averages

Given a continuous function $f: X \rightarrow \mathbb{R}$ ("potential"),

$$\left\{\int f\,\mathrm{d}\mu\,;\,\mu\in\mathcal{M}_{\mathcal{T}}\right\}=:[\alpha(f),\,\beta(f)]$$

 $\mu \in \mathcal{M}_T$ s.t. $\int f d\mu = \beta(f)$ is called a **maximizing** measure.



Note: **Ergodic** maximizing measures always exist. In particular, uniqueness \Rightarrow ergodicity.

Lyapunov

Expressing $\beta(f)$ in terms of Birkhoff averages

Birkhoff sum
$$f^{(n)} := f + f \circ T + \cdots + f \circ T^{n-1}$$

$$\beta(f) = \sup_{x \in X} \limsup_{n \to \infty} \frac{f^{(n)}(x)}{n}$$
$$= \lim_{n \to \infty} \sup_{x \in X} \frac{f^{(n)}(x)}{n}$$

Birkhoff 000●0000 Mañé 00000000 Lyapunov

Ergodic optimization of Birkhoff averages

Meta-Problem

Describe maximizing measures.

Lyapunov

Maximizing measures: Generic uniqueness

Theorem (Conze–Guivarch, Jenkinson, ...)

Let \mathcal{F} be any "reasonable"(*) space \mathcal{F} of continuous functions.

For generic f in the maximizing measure is **unique**.

(*) a vector space \mathcal{F} continuously and densely embedded in $C^0(X)$.

Generic set: intersection of a countable family of open and dense sets.

Lyapunov

The inverse problem

Theorem (Jenkinson)

Given $\mu \in \mathcal{M}_{T}^{erg}$, there exists $f \in C^{0}(X)$ such that μ is the unique maximizing measure for f.

If μ has finite support then f can be taken C^{∞} .

How regular f can be taken, in general? Not much: As we will see later, if T is "hyperbolic" and supp μ is not uniquely ergodic, then f cannot be Hölder.

Maximizing measures should be simple

Meta-Conjecture (~ Hunt–Ott, Phys. Rev. 1996)

Suppose $T: X \to X$ is chaotic. Then for typical regular functions $f: X \to \mathbb{R}$, the maximizing measure has low complexity.

Many results (including Yuan, Hunt'99; Contreras, Lopes, Thieullen'01; Bousch'01; Morris'08; Quas, Siefken'12); the best one is:

Theorem (Contreras'16)

T unif. expanding \Rightarrow for generic Lipschitz f's (actually all f's in an **open** and dense subset), the maximizing measure is supported on a periodic orbit.

Only result with a probabilistic notion of typicality (**prevalence**): Bochi–Zhang'16. Mañé ooooooo

A nice example

Conze–Guivarch'93, Hunt–Ott'96, Jenkinson'96, Bousch'00

 $T(x) = 2x \mod 2\pi$ on the circle $X \coloneqq \mathbb{R}/2\pi\mathbb{Z}$

f = trigonometric polynomial of deg. 1 WLOG, $f(x) = f_{\theta}(x) = \cos(x - \theta)$

Theorem (Bousch'00)

For every $\theta \in [0, 2\pi]$, the function f_{θ} has a unique maximizing measure μ_{θ} , and it has zero entropy (actually, Sturmian).

Furthermore, for Lebesgue-a.e. θ (actually, all θ outside a set of Hausdorff dim. 0), μ_{θ} is supported on a periodic orbit.

Mañé ●0000000

Part 2 Mañé–type Lemmas

Coboundaries and $oldsymbol{eta}(oldsymbol{\cdot})$

 $f \in C^0(X)$ is a **coboundary** if $f = h \circ T - h$ for some $h \in C^0(X)$. Notation: $f \sim 0$.

 $f, g \in C^0(X)$ are **cohomologous** if f - g is a coboundary. <u>Notation</u>: $f \sim g$. Note:

$$\begin{split} f \sim g & \Rightarrow \quad \int f \, \mathrm{d}\mu = \int g \, \mathrm{d}\mu \quad \forall \mu \in \mathcal{M}_T \\ & \Rightarrow \quad \beta(f) = \beta(g). \end{split}$$

Note:

 $\beta(f) \leq \max(f)$.

Consequence:

$$\begin{aligned} \beta(f) &\leq \max(g) \quad \forall g \sim f \\ \beta(f) &\leq \inf_{g \sim f} \max(g) \end{aligned}$$

Mañé oo●ooooo

Coboundaries and $\beta(\cdot)$

Proposition (Duality formula; Furstenberg, Kifer'83 (?))

$$\forall f \in C^0(X) \text{ we have } \beta(f) = \inf_{\substack{g \sim f}} \max(g).$$

Lemma (Folklore)

$$\forall f \in C^0(X) \text{ and } n \ge 1 \text{ we have } \frac{f^{(n)}}{n} \sim f.$$

Proof.

$$h := \frac{1}{n} \sum_{i=1}^{n} f^{(i)} \Rightarrow f + h \circ T - h = \frac{f^{(n)}}{n}.$$

Proof of the duality formula.

$$\inf_{g \sim f} \max(g) \ge \beta(f) = \inf_{n} \max\left(\frac{f^{(n)}}{n}\right) \ge \inf_{g \sim f} \max(g).$$

Mañé 000●0000 Lyapunov

Reformulation of duality formula

Proposition

Suppose $T: X \to X$ and $f: X \to \mathbb{R}$ are continuous. Then for every $\epsilon > 0$, there exists $g \sim f$ taking values in the interval $[\alpha(f) - \epsilon, \beta(f) + \epsilon]$. Actually, $g = \frac{f^{(n)}}{n}$ for some large n.

Remark. This proposition can be extended in several ways:

- Optimization of Birkhoff averages of vector-valued functions. same proof.
- Optimization of Lyapunov exponents: we will see later.

Mañé 0000●000

Mañé Lemma

Theorem (Mañé Lemma or Revelation Lemma)

Suppose:

- $T: X \rightarrow X$ is "**hyperbolic**" (e.g. uniformly expanding, SFT, Anosov);
- $f: X \to \mathbb{R}$ is Hölder-continuous.

Then the inf in the duality formula is attained: there exists $g \sim f$ such that

 $\beta(f) = \max(g).$

Furthermore, $g = f + h \circ T - h$ with h Hölder.

Several formulations (and proofs): Mañé'92, Conze–Guivarc'h'93, Fathi'97, Savchenko'99, Bousch'00, Contreras–Lopes–Thieullen'01, Lopes–Thieullen'03, Pollicott–Sharp'04, Bousch'11). Mañé 00000●00 Lyapunov

Mañé Lemma = Non-positive Livsic

Theorem (Livsic Lemma)

Suppose $T: X \to X$ is hyperbolic and $f: X \to \mathbb{R}$ is Hölder.

 $\forall \mu \in \mathcal{M}_T$, $\int f d\mu = 0 \Rightarrow \exists h \text{ Hölder such that } f = h \circ T - h$.

Theorem (Mañé Lemma (equivalent formulation))

Suppose $T: X \to X$ is hyperbolic and $f: X \to \mathbb{R}$ is Hölder.

 $\forall \mu \in \mathcal{M}_T, \ \int f \, d\mu \leq 0 \ \Rightarrow \ \exists h \ H \ddot{o} l der \ such \ that \ f \leq h \circ T - h.$

Mañé 000000●0

Maximizing sets

Proposition (Subordination principle)

Suppose $T: X \to X$ is hyperbolic and $f: X \to \mathbb{R}$ is Hölder. Then there exists a T-invariant compact set $K \subseteq X$ such that $\mu \in \mathcal{M}_T$ is maximizing iff supp $\mu \subseteq K$.

Proof.

By Mañé Lemma, replacing f by some function $\sim f$, we can assume that $f \leq \beta = \beta(f)$. Let $K := f^{-1}(\beta)$. Then:

$$\int f \, \mathrm{d}\mu = \beta \quad \Longleftrightarrow \quad \mu(K) = 1 \quad \Longleftrightarrow \quad \mathrm{supp}\, \mu \subseteq K \,.$$

Corollary

Suppose $T: X \to X$ is hyperbolic and $f: X \to \mathbb{R}$ is Hölder. If the maximizing measure is unique then its support is uniquely ergodic.

Lyapunov

Bilateral Mañé Lemma

Theorem (Bilateral Mañé Lemma; Bousch'02)

Suppose $T: X \to X$ is hyperbolic and $f: X \to \mathbb{R}$ is Hölder. Then there exists $g \stackrel{\text{Hölder}}{\sim} f$ taking values in the interval

$$[\alpha(f), \beta(f)] =: \left\{ \int f \, \mathrm{d}\mu ; \mu \in \mathcal{M}_T \right\}.$$

Remark: The corresponding statement in higher dimension ("vectorial Mañé Lemma") is false – J.B., Vicent Delecroix. Details: See J.B., ArXiv 1712.01612

Part 3 Non-commutative ergodic optimization: Lyapunov exponent

Replace the scalar function *f* by a (continuous) matrix-valued function:

 $F: X \to Mat(d \times d, \mathbb{R}) \text{ or } GL(d, \mathbb{R})$ ("cocycle").

The Birkhoff sums are replaced by products:

$$F^{(n)}(x) \coloneqq F(T^{n-1}x)\cdots F(Tx)F(x).$$

Top Lyapunov exponent:

$$\lambda_1(F, x) \coloneqq \lim_{n \to \infty} \frac{1}{n} \log \|F^{(n)}(x)\|$$
 (if it exists)

For any $\mu \in \mathcal{M}_T$, the limit exists for μ -a.e. $x \in X$.

$$\lambda_1(F,\mu) \coloneqq \int \lambda_1(F,x) \,\mathrm{d}\mu(x)$$

Optimization of the top Lyapunov exponent

$$\alpha(F) \coloneqq \inf_{\mu \in \mathcal{M}_{\mathcal{T}}} \lambda_1(F, \mu)$$
$$\beta(F) \coloneqq \sup_{\mu \in \mathcal{M}_{\mathcal{T}}} \lambda_1(F, \mu)$$

For "one-step cocycles":

- e^{β(F)} is called joint spectral radius (Rota, Strang'60; Daubechies, Lagarias'92, ...)
- $e^{\alpha(F)}$ is called **joint spectral subradius** (Gurvits'95).

 λ_1 -minimizing/maximizing measures?

Basic difficulty: $\mu \in \mathcal{M}_T \mapsto \lambda_1(F, \mu)$ is **not continuous**, in general. It is **upper semi-continuous**, at least.

$$\begin{aligned} &\alpha(F) \coloneqq \inf_{\mu \in \mathcal{M}_{T}} \lambda_{1}(F, \mu) \quad \odot \text{ not necessarily attained} \\ &\beta(F) \coloneqq \sup_{\mu \in \mathcal{M}_{T}} \lambda_{1}(F, \mu) \quad \odot \text{ always attained} \end{aligned}$$

Let us forget about $\alpha(F)$ and focus on $\beta(F)$ and the corresponding Lyapunov-maximizing measures. Another characterization:

$$\beta(F) = \lim_{n \to \infty} \sup_{x \in X} \frac{1}{n} \log \|F^{(n)}(x)\|.$$

Lyapunov

Expected panorama for λ_1 -maximization

Meta-Conjecture

Suppose $T: X \to X$ is hyperbolic. Then for typical regular cocycles $F: X \to GL(d, \mathbb{R})$, the Laypunov-maximizing measure is unique and low complexity.

A result of this type: Bochi-Rams'16.

But let's go back to basics...

Conjugacy

Mañé 0000000

Two cocycles *F*, *G* are called **conjugate** if there is a continuous $H: X \rightarrow GL(d, \mathbb{R})$ such that:

$$G(x) = H(Tx)F(x)H(x)^{-1}.$$

Notation: $G \sim F$.

By "telescopic multiplication":

$$G^{(n)}(x) = H(T^n x)F^{(n)}(x)H(x)^{-1}$$
.

Therefore $\beta(G) = \beta(F)$.

Birkhoff 00000000 Mañé 0000000

"Duality"

$$G \sim F \Rightarrow \beta(G) = \beta(F)$$

Trivial estimate: $\beta(F) \leq \max_{\substack{x \in X \\ x \in X}} \log ||F(x)||$. We can "optimize" this estimate:

Proposition ("Duality formula" for β)

Suppose $T: X \to X$ and $F: X \to GL(d, \mathbb{R})$ are continuous. Then

 $\beta(F) = \inf_{G \sim F} \max_{x \in X} \log \|G(x)\|.$

Proof: Lyapunov–Pesin norms trick.

Remark: There is a generalization of the Proposition that takes into account **all** Lyapunov exponents: J.B. ArXiv 1712.01612, Prop 4.1, using **averaging in a symmetric space** of nonpositive curvature (\sim B.–Navas'15)

A Mañé Lemma for $\beta(F)$?

Question

Suppose $T: X \to X$ is hyperbolic and $F: X \to GL(d, \mathbb{R})$ is Hölder. Is there a cocycle *G* conjugate to *F* such that

$$\beta(F) = \max_{x \in X} \log \|G(x)\|?$$

The answer is **NO**! Cheap example: $F = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ constant. Then:

 $\beta(F) = 0$ but $A G \sim F$ s.t. $\|G\| \le 1$ everywhere. (*)

A honest (irreducible and fiber-bunched) example (B., Garibaldi): One-step cocycle: $T: \{0, 1\}^{\mathbb{N}} \leftrightarrow \text{shift}, F(x) = A_{x_0}$ where $A_0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $A_1 = \begin{pmatrix} 0.8 & -0.1 \\ 0.8 & 0.1 \end{pmatrix}$. Then (*).

Let us insist anyway

A **Riemannian norm** is a **continuous** choice of inner products $\langle \cdot, \cdot \rangle_x$ (and so of Euclidian norms $\|\cdot\|_x$) on \mathbb{R}^d_x ($x \in X$).

Remark

Given $T: X \rightarrow X$ and $F: X \rightarrow GL(d, \mathbb{R})$, the following are equivalent:

1 $G \sim F$ such that $e^{\beta(F)} = \max_{x \in X} \|G(x)\|_{eucl}$.

② ∃ a Riemannian norm such that $||F(x)v||_{T_X} \le e^{\beta(F)} ||v||_X, \forall x \in X, \forall v \in \mathbb{R}^d_x.$

Proof.

 $G(x) = H(Tx)^{-1}F(x)H(x)$ where H(x) takes the euclidian unit ball on \mathbb{R}^d_x to the unit ball w.r.t. the Riemannian norm $\|\cdot\|_x$.

What about Finsler?

Consider instead **Finsler** norms $\|\cdot\|_x$, $x \in X$.

Theorem (Mañé Lemma for Cocycles; B., Garibaldi)

Suppose $T: X \to X$ is hyperbolic and $F: X \to GL(d, \mathbb{R})$ is Hölder. Then, under two natural conditions, there exists a Finsler norm $\|\|\cdot\|_{x}, x \in X$, such that:

$$|||F(x)v|||_{Tx} \le e^{\beta(F)} |||v|||_x \qquad \forall x \in X, \ \forall v \in \mathbb{R}^d_x. \tag{\star}$$

Furthermore, the norm can be taken Hölder continuous.

Any norm satisfying (*) is called an **extremal norm**.

Motivation: Barabanov norms

Fix a tuple (A_1, \ldots, A_k) of $d \times d$ matrices. **One-step cocycle:** $T : \{1, \ldots, k\}^{\mathbb{N}} \longleftrightarrow$ shift, $F(x) \coloneqq A_{x_0}$.

The tuple is called **irreducible** if there is no nontrivial subspace $V \subset \mathbb{R}^d$ such that $A_i(V) \subseteq V$, $\forall i$.

Theorem (Barabanov'88)

If the tuple is irreducible then the cocycle admits an extremal norm, i.e., $|||A_{x_0}v|||_{Tx} \leq e^{\beta(F)} |||v|||_x$. Actually, the norm is constant (does not depend on x), and satisfies the stronger **calibration property**: $\forall v \in \mathbb{R}^d$,

$$\max_{i \in \{1,...,k\}} |||A_i v||| = e^{\beta(F)} |||v|||.$$

Existence of extremal norm fails for reducible tuples: $A_i = \begin{pmatrix} 1 & a_i \\ 0 & 1 \end{pmatrix}$.

Precise statement

Theorem (Mañé Lemma for Cocycles; B., Garibaldi)

Let $T: X \to X$ be hyperbolic and $F: X \to GL(d, \mathbb{R})$ be θ -Hölder. Suppose:

- F is irreducible;
- F is strongly fiber bunched;

Then there exists a (Hölder-continuous) extremal norm, i.e. a Finsler norm $\|\|\cdot\||_x$, $x \in X$, such that:

$$|||F(x)v|||_{T_X} \le e^{\beta(F)} |||v|||_x \qquad \forall x \in X, \ \forall v \in \mathbb{R}^d_x.$$

Furthermore, if T is a shift then the norm is "Barabanov-like".

Remark: Irreducibility is open and dense (and prevalent) among fiber-bunched cocycles.

The first condition: irreducibility

Suppose $T: X \to X$ is hyperbolic and $F: X \to GL(d, \mathbb{R})$ is θ -Hölder.

We say that *F* is **irreducible** if it admits no θ -Hölder invariant proper subbundle.

Note: It is perfectly ok that *F* admits a **continuous** (or even θ' -Hölder, $\theta' < \theta$) invariant proper subbundle: indeed this happens if *F* admits a **dominated splitting**.

Bolicity

The **bolicity** of a matrix $A \in GL(d, \mathbb{R})$ is:

$$\mathsf{bol}(A) := \|A\|_{\mathsf{eucl}} \, \|A^{-1}\|_{\mathsf{eucl}}$$

Notes:

- bol(A) ≥ 1;
- bol(A) = 1 iff A is conformal (angle preserving);
- $bol(A) \gg 1$ iff distorts angles very much.

The second condition: fiber-bunching

Let $T: X \to X$ be a **hyperbolic homeomorphism**. **Hyperbolicity rate** $\tau > 0$: *T* contracts local stable sets by factor $e^{-\tau}$; similarly for T^{-1} .

A cocycle $F: X \rightarrow GL(d, \mathbb{R})$ is **fiber-bunched** if it is θ -Hölder and, $\forall x \in X$,

$$\mathsf{bol}(F(x)) < e^{\tau\theta}$$

(A sort of partial hyperbolicity for the projective skew-product).

When d > 2, our main results actually need **strong fiber-bunched** (smaller bolicity) – details omitted.

Example: One-step cocycles are (strongly) fiber-bunched, because we can take $\theta \gg 1$ (they are locally constant).

Lyapunov

Subordination principle for λ_1

Corollary

Suppose T is a hyperbolic homeomorphism, and that F is a strongly fiber-bunched cocycle. Then there exists a **maximizing set**: a T-invariant compact set $K \subseteq X$ such that:

 μ is λ_1 -maximizing \Leftrightarrow supp $\mu \subseteq K$

Proof.

Induction on dimension ...

Related work: Morris'13.

Holonomies

Proposition

If (T, F) is fiber-bunched then there exist **stable holonomies**: linear maps $H_{y \leftarrow x}^{s} : \mathbb{R}_{x}^{d} \to \mathbb{R}_{y}^{d}$, defined whenever $y \in W^{s}(x)$, such that:

$$I H^{s}_{x \leftarrow x} = id.$$

$$P^{\mathsf{s}}_{z \leftarrow y} \circ H^{\mathsf{s}}_{y \leftarrow x} = H^{\mathsf{s}}_{z \leftarrow x}.$$

🕘 (Hölder-)continuity properties . . .

Likewise for unstable holonomies H^u.

Proof.

$$H^{\mathsf{s}}_{y \leftarrow x} \coloneqq \lim_{n \to +\infty} \left[F^{(n)}(y) \right]^{-1} \circ F^{(n)}(x).$$

Mañé ooooooo

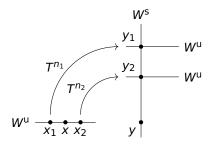
Spannability

A fiber-bunched cocycle (T, F) is called **spannable** if for all $x, y \in X$, and all nonzero $u \in \mathbb{R}^d_x$, there exist:

- points $x_1, \ldots, x_d \in W^u(x)$;
- integers $n_1, \ldots, n_d \ge 0$ s.t. each $y_i := T^{n_i} x_i \in W^s(y)$;

in such a way that $\{v_1, \ldots, v_d\}$ is a basis for \mathbb{R}^d_{v} , where:

$$\mathbf{v}_i \coloneqq H^{\mathsf{s}}_{\mathbf{y} \leftarrow \mathbf{y}_i} \circ F^{(n_i)}(\mathbf{x}_i) \circ H^{\mathsf{u}}_{\mathbf{x}_i \leftarrow \mathbf{x}}(\mathbf{u})$$



Lyapunov

Irreducibility vs Spannability

Assume (T, F) is fiber bunched.

Remark

Spannable \Rightarrow Irreducible

Theorem (B., Garibaldi)

Irreducible + strongly bunched \Rightarrow Spannable

Theorem (Clark Butler; personal comm.)

Pinching & Twisting \Rightarrow Spannable

Pinching & Twisting is a strong form of irreducibility used by Bonatti-Viana and Avila-Viana to get simplicity of Lyapunov spectrum (w.r.t. to certain "good" invariant measures).

Lyapunov

Spannability: to-do-list

Assume (T, F) is fiber bunched.

Problem

Characterize spannability "geometrically". Is it equivalent to (strong?) irreducibility?

Potential application of spannability: existence and uniqueness of **equilibrium states** with Gibbs property for the **subadditive pressure**

 $P_t(F,\mu) \coloneqq h(F,\mu) + t\lambda_1(F,\mu).$

The idea is that spannability should imply a cocycle version of the "quasi-multiplicativity property"...

An even more precise statement

Theorem (Mañé Lemma for Cocycles; B., Garibaldi)

Suppose (T, F) is spannable. Then there exists an extremal norm, i.e. a Finsler norm $\|\cdot\|_{x}$, $x \in X$, such that:

 $|||F(x)u|||_{T_x} \le e^{\beta(F)} |||u|||_x \qquad \forall x \in X, \ \forall u \in \mathbb{R}^d_x,$

and this norm is Hölder-continuous. Furthermore, if T is a shift then the norm is "Barabanov-like":

1 Iocal H^u-invariance: $\forall x \in X, \forall u \in \mathbb{R}^d_x, \forall y \in W^u_{loc}(x),$

$$|||u|||_{x} = |||H^{\mathsf{u}}_{y\leftarrow x}(u)|||_{y};$$

2 calibration: $\forall x \in X$, $\forall u \in \mathbb{R}^d_x$, $\exists y \in W^u_{loc}(x)$ s.t.

 $v := H^{\mathrm{u}}_{v \leftarrow x}(u) \Rightarrow$ $|||F(y)v|||_{Tv} = e^{\beta(F)} |||v|||_{v}$

Construction of extremal norms (shift case)

Suppose T = shift. Our norm is given by en explicit formula:

$$|||u|||_{x} := \limsup_{n \to \infty} e^{-\beta(F)n} \sup_{y \in W^{\mathrm{u}}_{\mathrm{loc}}(x)} ||F^{(n)}(y) \circ H^{\mathrm{u}}_{y \leftarrow x}(u)||$$

- Compactness argument $\Rightarrow |||u_0|||_{x_0} < \infty$ for some (x_0, u_0) with $u_0 \neq 0$.
- Spannability $\Rightarrow |||u|||_x < \infty$ for all (x, u).
- Verifications...

Case $T \neq$ shift: use bump functions.

Applications

Assuming fiber-bunching:

- Subordination principle (and therefore <u>Mather sets</u>).
- $\beta(\cdot)$ is <u>locally Lipschitz</u> among irreducible cocycles [extending Wirth'02]
- $e^{-n\beta(F)} \|F^{(n)}\|$ is either bounded (irreducible case) or grows polynomially.
- Extra structure for the <u>Mather sets</u> (dominated <u>splittings</u>) [extending Morris'10].
- **5** $\beta(F)$ can be approximated by $\lambda_1(F, \mu)$ with μ supported on <u>periodic orbits</u>, and the quality of the approximation is <u>super-polynomial</u> w.r.t. the period of the orbit. [extending Bressaud, Quas'07; Morris'10]
- Meta-conjecture (typical λ_1 -maximizing measures should have low complexity)?? OPEN