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Cocycles

Our basic setting:

X is a compact metric space;
f : X→ X is a continuous map (often a
homeomorphism);
SL±(2,R) is the group of 2× 2 real matrices with
determinant ±1;
A : X→ SL±(2,R) is a continuous map.

We call the pair (f ,A) a cocycle.

We’re interested in the matrix products:

A(n)(x) := A(fn−1x) · · ·A(fx)A(x) .
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Uniform hyperbolicity

Let (f ,A) be a cocycle (i.e. f : X→ X and A : X→ SL±(2,R)
are continuous).

Definition
The cocycle (f ,A) is uniformly hyperbolic (UH) if the
norms of the products grow uniformly exponentially:

∃ϵ > 0 ∃n0 > 0 ∀x ∈ X ∀n ≥ n0 , ‖A(n)(x)‖ > eϵn .
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Lyapunov exponents and spectrum

Let (f ,A) be a cocycle. Let μ be an ergodic measure for
f . By Oseledets’ theorem, there exists λ(A, μ) such that
for μ-a.e. x,

lim
n→∞

1

n
log ‖A(n)(x)‖ = λ(A, μ) .

The Lyapunov spectrum of the cocycle (f ,A) is the set

Λ(A) :=
�

λ(A, μ) ; μ is ergodic
	

.
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Uniform positivity of LE vs uniform hyperbolicity

If the cocycle (f ,A) is UH, then the Lyapunov exponents
of ergodic measures are away from 0:

Λ(A) ⊂ [ϵ,+∞) for some ϵ > 0.

The converse is false: take e.g. a NUH (nonuniformly
hyperbolic) cocycle over an irrational rotation (Herman
1981).
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Uniform positivity of LE vs uniform hyperbolicity
(cont’d)

What if f has “lots” of invariant measures?

We say that a cocycle (f ,A) is in the Livsic setting if:

f : X→ X is a hyperbolic homeomorphism (SFT or
hyperbolic basic set);
A : X→ SL±(2,R) is a Hölder map.

Theorem (Velozo Ruiz 2020 (based on
Cao–Luzzatto–Rios 2006))
There exists a cocycle in the Livsic setting such that the
LE of all ergodic measures are uniformly away from
zero, and yet the cocycle is not UH.

Idea: hyperbolicity degenerates along a single
homoclinic orbit.
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Sufficient conditions for UH

Theorem (Velozo Ruiz 2020)
If a cocycle (f ,A) in the Livsic setting is fiber-bunched
and the LE of all ergodic measures are uniformly away
from zero, then it is UH.
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Sufficient conditions for UH (cont’d)

Theorem (Guysinsky / DeWitt–Gogolev 2024)

If (f ,A) is a cocycle in the Livsic setting and

∀ ergodic measure μ, λ(A, μ) = c ,

where c is a positive constant, then the cocycle is UH.
Actually, the hypothesis can be weakened to “narrow
spectrum”: all LE are “close” to c, where “closeness”
depends on f and the Hölder exponent of A).
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Example of point spectrum without UH

Our first result says that the Hölder hypothesis in the
narrow spectrum theorem (Guysinsky /
DeWitt–Gogolev) cannot be relaxed:

Theorem (Example 1)

There exists a hyperbolic homeomorphism f : X→ X and
a continuous map A : X→ SL±(2,R) such that

∀ ergodic measure μ, λ(A, μ) = some constant c > 0 ,

but the cocycle (f ,A) is not uniformly hyperbolic.

Can this be proved by tweaking Velozo Ruiz’s example? I don’t think
so.



UH & LE Approximation Summary Monochromatic example Bichromatic example

How does the LE depend on the measure?

Given a cocycle (f ,A), the LE is a measurable function
of the point which in general is not continuous.

The LE is not a continuous function of the measure
either (unless the cocycle is UH...):

Example (a cocycle in the Livsic setting)

f = shift on {0,1}Z

A =

¨
�

2 0
0 1/2

�

on the cylinder [0]
�

0 −1
1 0

�

on the cylinder [1]

μn := prob. measure supp’d on the periodic orbit (0n1)∞

μ := prob. measure supp’d on the fixed pt. 0∞

⇒ μn
weak ∗−−−−→ ν but λ(A, μn)

︸ ︷︷ ︸

0

6→ λ(A, μ)
︸ ︷︷ ︸

log2
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Approximation of LE using periodic orbits

Despite the previous difficulty, we have the following
positive result:

Theorem (Kalinin 2011)
If (f ,A) is a cocycle in the Livsic setting, and ν is any
ergodic measure for f , then there exists a sequence of
invariant measures μn supported on periodic orbits
such that

μn
weak ∗−−−−→ ν and λ(A, μn)→ λ(A, μ) .



UH & LE Approximation Summary Monochromatic example Bichromatic example

An example with no periodic approximation

Our second result says that the Hölder hypothesis in
Kalinin’s approximation theorem cannot be relaxed:

Theorem (Example 2)

Fix numbers c > ϵ > 0. There exists a hyperbolic
homeomorphism f : X→ X and a continuous map
A : X→ SL±(2,R) with the following properties:

there exists an ergodic measure ν whose support is
not a periodic orbit such that λ(A, ν) = c;

for all ergodic measures μ different from ν, we
have λ(A, μ) ≤ ϵ;
lim
μ→ν
μ 6=ν

λ(A, μ) = 0.
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Summary: the two examples

1 “Monochromatic” example:

0 λ(A, ∀μ)

2 “Bichromatic” example:

0 ϵ
λ(A,∀μ)
μ 6=ν

λ(A, ∃!ν)

In each example:

the base f is hyperbolic;
the cocycle (f ,A) is not UH;
the cocycle map A is C0 (and cannot be Hölder).
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Strategy

The two constructions have some similarities:

We start with a specific NUH cocycle over a strictly
ergodic base dynamics.
We embed this base dynamics in a hyperbolic
dynamics f .
We carefully extend the cocycle so that it has the
desired properties.
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Veech transformation

Theorem (Veech 1969)
There exists a compact metric space Y and a
homeomorphism f : Y → Y such that:

f is strictly ergodic (i.e. minimal and uniquely
ergodic);

f2 is minimal but not uniquely ergodic.

f2 admits exactly two ergodic measures ν0, ν1.

supp(ν0) = supp(ν1) = Y , f∗(ν0) = ν1 , f∗(ν1) = ν0 .

The unique f -invariant probability measure is:

ν =
ν0 + ν1

2
,
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Walters cocycle

f : Y → Y Veech map

ν = unique f -inv measure = ν0+ν1
2 where f∗(νi) = ν1−i.

Choose a continuous function φ : Y → R such that
∫

φdν0 6=
∫

φdν1 .

The Walters cocycle is (f ,A) where

A(x) :=

�

0 eφ(x)

e−φ(x) 0

�

Note: detA ≡ −1.

Proposition (Walters 1984)

The Walters cocycle has λ(A, ν) > 0, but it is not UH.
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Walters cocycle (cont’d)

Proof that Walters is NUH.

A(x) :=

�

0 eφ(x)

e−φ(x) 0

�

  A(2)(x) =

�

eψ(x) 0
0 e−ψ(x)

�

ψ := φ ◦ f − φ
∫

ψdν0 =

∫

φdν1 −
∫

φdν0 =: c 6= 0

lim
n→∞

1

2n

n−1
∑

j=0

ψ(f2jx)→
¨

c for ν0-a.e. x
−c for ν1-a.e. x

λ(A, ν) = |c| > 0

The Oseledets direction Es is either R
�

1
0

�

or R
�

0
1

�

, each
case occurring on a dense set of ν-measure 1

2 . So the
cocycle cannot be UH.
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Construction of monochromatic cocycle

There is a Veech map that can be realized as a subshift
Y ⊂ {1,2,3}Z.

We extend the Walters cocycle to X := {1,2,3}Z,
keeping the form A(x) =

�

0 eφ(x)

e−φ(x) 0

�

.

We choose a continuous function α : X→ [0, 1
10 ] such

that α−1(0) = Y but with a very bad modulus of
continuity around Y:

d(x,Y)

α(x)
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Invariant cone

Take the following positive matrix P(x) with
determinant 1:

e1

e2

α(x)

α(x)

P(x) · e1

P(x) · e2

Define the (nonnegative) cocycle

B(x) := A(x)P(x)
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Invariant field of directions

Lemma

There exists a continuous u : Xr Y → R2
+
with ‖u(x)‖ = 1

such that
B(x)u(x) = scalar · u(fx) .

Write the “scalar” as ec+ρ(x), where c is the LE of the
Walters cocycle.

The function ρ : Xr Y → R is continuous and bounded. If
it were cohomologous to 0, the cocycle would be
monochromatic, as desired.

Idea: Tweak the cocycle so that ρ becomes a
coboundary.
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Controlled times

Birkhoff sums:

Snρ(x) := ρ(x) + ρ(fx) + · · ·+ ρ(fn−1x)

Lemma (Technical core)
If the construction is done carefully, there exists a
function n : Xr Y → R+ such that

n(x)→∞ “slowly” as x→ Y.
Sn(x)ρ(x)

n(x)
→ 0 as x→ Y.
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End of the construction

Lemma (Approximate cohomological equation)
For x ∈ Xr Y,

ρ(x) = c+G(fx)− G(x) +R(x)

where G and R are continuous on Xr Y and

R(x)→ 0 as x→ Y .

Desired monochromatic cocycle:

Ã(x) := B(x)Q(x) where
�

Q(x)u(x) = e−R(x)u(x)
Q(x)u(x)⊥ = eR(x)u(x)⊥

for x ∈ Xr Y, and Ã = the Walters cocycle on Y. �
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The second theorem (again)

Theorem (Bichromatic example)

Fix numbers c > ϵ > 0. There exists a hyperbolic
homeomorphism f : X→ X and a continuous map
A : X→ SL±(2,R) with the following properties:

there exists an ergodic measure ν whose support is
not a periodic orbit such that λ(A, ν) = c;

for all ergodic measures μ different from ν, we
have λ(A, μ) ≤ ϵ;
lim
μ→ν
μ 6=ν

λ(A, μ) = 0.

0 ϵ
λ(A,∀μ)
μ 6=ν

λ(A, ∃!ν)
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Fibonacci word

Define a sequence of words Fn on letters 0, 1 by the
rules:

F0 = 0, F1 = 01, Fn+2 = Fn+1Fn

So:

F0 = 0
F1 = 01
F2 = 010
F3 = 01001 etc.

Let F∞ be the unique infinite word that has each Fn as a
prefix.
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Fibonacci in the circle

The letters of F∞ are the binary digits of a number:

ξ := 0.01001010 . . .base two = 0.290196557 . . .base ten

Let f be the doubling map on the circle T := R/Z.

Let K be the closure of the f -orbit of ξ. This is a
(zero-dimensional) Cantor set that contains ξ.

The map f |K is a homeomorphism, and it is
semiconjugate to the irrational rotation by α := 3−

p
5

2 .
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Gap structure

The gaps of the Cantor set K can be enumerated as
intervals I0, I1, I2, . . . of respective lengths 1

2 ,
1
4 ,

1
8 , . . .

f (In+1) = In, f (I0) = Tr {ξ}

I0

I1

I2

I3

ξ

0
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An initial cocycle

Choose a NUH cocycle (Rα,B) over the (irrational)
rotation by α = (3−

p
5)/2.

Using the semiconjugacy h : K → T, this cocycle can be
realized as (f |K ,A), for some A : K → SL(2,R):

A(x) = B(h(x)), x ∈ K

Remark: Note that if p,q are the extremes of a same
interval In, then A(p) = A(q).

Set that aside while we unpack the next ingredient...
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Accessibility by bounded cocycles

Theorem (Avila–B.–Damanik 2012)
Let g be an irrational rotation (or essentially any non-periodic

stricly ergodic homeo) and let B : T→ SL(2,R) be homotopic
to constant. If the cocycle (g,B) is not UH, then there
exists an homotopy (Bt)t∈[0,1] from B0 = B to
B1 = const Id such that for each t ∈ (0,1], the cocycle
(g,Bt) has zero LE, and actually bounded products:

M(t) := sup
n

sup
x
‖B(n)

t (x)‖ <∞ .

Rem: Furthermore, M(·) is continuous on (0,1]. By
reparametrization, we can assume that M(t)→ 0 slowly
as t→ 0.
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Warm-up: a discontinuous example

We already defined a NUH cocycle on the Fibonacci
Cantor set K ⊂ T as A(x) := B(h(x)); we want to extend it
to the circle T.

Define a (discontinuous) function ρ : T→ [0,1]:

0

1

I0 I1I2 I3

Use ρ to “insert” the ABD homotopy in each gap:

x ∈ Ik ⇒ A(x) := Bt(h(p)) with t = ρ(x) ,p ∈ ∂Ik .
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Warm-up: a discontinuous example (cont’d)

Claim: lim
μ→ν
μ 6=ν

λ(A, μ) = 0. (ν := unique f -inv. meas. supp. K).

Sketch of proof:

If μ is weak-*-close to ν, then μ(I0) is close to 0.
By the Kac formula, for μ-typical points x, the return
times ni to I0 are large (in average).
So the orbit of x traverses long towers
Ini → Ini−1→ · · · → I0.
The tent geometry is preserved under the
doubling map, so the corresponding cocycle
product involves only Bt’s with the same t = ti, and
therefore is uniformly bounded by some M(t).

Can we bound logM(ti)
ni

? Not directly, but...
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Warm-up: a discontinuous example (cont’dd)

If t is very small (which is bad), then the (return)
point y ∈ I0 is very close to ∂I0, so f (y) is very close
to ξ.
So the next return time ni+1 is big (which is good),
so ultimately logM(ti) ≤ F(ni+1) for some function F.
Reparametrizing the homotopy we can assume F is
sublinear (e.g. F(n) =

p
n).

λ(A,x) ≤ lim sup
i→∞

F(n2) + F(n3) + · · ·+ F(ni+1)

n1 + n2 + · · ·+ ni
is small.
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Construction of the bichromatic example
(finale)

Choose a sequence of times scales

0 = ℓ0� ℓ1� ℓ2� · · · .

For each n in the interval [ℓk, ℓk+1), squish the tent on In
by factor 1

k .

With this modification, the cocycle is now continous.

The “tent geometry” is still preserved on long pieces of
orbits.

With more work we can bound the Lyapunov exponent.

�
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Improving the second theorem?

Question
Does there exist a truly “bichromatic” example?
(Lyapunov exponent exactly zero for all ergodic
measures except one).

Question
Can we do even better and make the “periodic data”
trivial?

fn(p) = p ⇒ A(n)(p) = Id
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