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o
y
lesJairo Bo
hiDe
ember 7, 1999Abstra
tFor �xed ergodi
 dynami
al systems over a 
ompa
t spa
e, we show thatthere is a residual set of 
ontinuous SL(2;R)-
o
y
les whi
h are either hyperboli
or have Lyapunov exponent zero.1. Introdu
tionLet T : (X;�) - be an ergodi
 automorphism of a standard probability spa
e. To agiven bounded measurable mapping A : X ! SL(2;R), whi
h we 
all a 
o
y
le, we
an asso
iate its upper Lyapunov exponent�(A) = limn!+1 1n log 

A(Tn�1x) � � �A(x)

 � 0:We are interested in 
ontinuity (or dis
ontinuity) properties of the fun
tion � :L1(X;SL(2;R)) ! [0;1), where the transformation T is kept �xed. We 
on-sider also the situation where X is a 
ompa
t spa
e X . Then we study the fun
tion� : C(X;SL(2;R)) ! [0;1) over the 
ontinuous 
o
y
les.It is easy to see that � is upper-semi
ontinuous. However, Knill [K℄ showedthat � : L1(X;SL(2;R)) ! R is never 
ontinuous if T is aperiodi
 (i.e., periodi
points have measure zero). A
tually, he proves that the subset of L1(X;SL(2;R))
onsisting of the 
o
y
les with positive exponent is not open, thus � 
an drop to zerofor small perturbations. An example a similar situation is 
onstru
ted in [T℄, whereperturbations with small exponent are obtained by multiplying a 
o
y
le by some
onstant matri
es.On the other hand, if a 
o
y
le is hyperboli
 (meaning that the produ
t matri
esgrow uniformly) then it has positive exponent by de�nition and this positivity isrobust by perturbations. Moreover, as Ruelle proved [R2℄, the fun
tion � is evenreal-analyti
 (in Bana
h-algebra sense) in the open set of hyperboli
 
o
y
les.Our main result is the following: If T his ergodi
 then the set of 
o
y
les that areeither hyperboli
 or have zero Lyapunov exponent is a residual set in L1(X;SL(2;R))or C(X;SL(2;R)), a

ording to the 
ase 
onsidered. In other words, if a 
o
y
le withpositive exponent is not hyperboli
 then its exponent 
an drop to zero if we perturb the




o
y
le. The te
hniques used in the proof are similar to those of [K℄. The basi
 ideafor vanishing the exponent is to ex
hange the expanding and 
ontra
ting dire
tions,noti
ing that this 
an be done in the absen
e of hyperboli
ity.This fa
t leads us to ask whether or not do non-hyperboli
 
o
y
les with positiveexponent exist for a given 
ontinuous dynami
al system (X;T; �). The answer iseasily seem (see se
tion 6) to be \yes" if T is not uniquely ergodi
 and is unknown inthe general 
ase. Though, if T is an irrational translation of the torus Tn, n � 1, theanswer is positive, due to Herman's examples in [H℄, x4. The papers [W℄ and [F℄ dealwith 
o
y
les over uniquely ergodi
 transformations.We remark that the theorem does not extend to the C1 topology. Young exhibits[Y℄ open subsets of C1(X;SL(2;R)) made up of non-hyperboli
 
o
y
les with positiveexponent, where the base transformations are automorphisms of the two-torus.Our results should be 
ompared to Ma~n�e's 
laim that in the spa
e of C1 areapreserving di�eomor�sms of a 
ompa
t surfa
e there is a residual subset 
onsisting ofdi�eomor�sms that either are Anosov or have zero Lyapunov exponent. The posthu-mous arti
le [M℄ is a sket
h of a possible proof. Clearly Ma~n�e's 
onsiderations aremore deli
ate than ours.It is a 
ommon belief that positive exponents are prevalent even among non-hyperboli
 systems, but there is no general theorem in this dire
tion. Therefore ourset of 
o
y
les with exponent zero, although residual on the non-hyperboli
 part, isprobably \thin" in some measure sense. The extreme dis
ontinuity of the Lyapunovexponent must be one of the reasons why it is hard to prove that spe
i�
 systemshave positive exponent.2. PreliminariesLet (X;�) be a Lebesgue probability spa
e and T : X  - an automorphism of it.Denote L1M = fA : X ! SL(2;R) measurable; kAk is essen
ially boundedgand kAk1 = ess sup kAxk :Given A 2 L1M , we denoteAn(x) =8<: A(Tn�1x) � � �A(x)IA�1(Tnx) � � �A�1(T�1x) if n > 0if n = 0if n > 0Oselede
 theorem states that the limit�(A; x) = limn!+1 1n log kAn(x)kexists for �-a.e. x 2 X . (It does not depend on x if T is ergodi
). We de�ne theLyapunov exponent as �(A) = ZX �(A; x)d�(x)2



(Maybe a better name would be \integrated LE". Besides, one usually says that thereare two exponents, �(A; x) and ��(A; x).) If �(A) > 0 then there exists a splittingR2 = Eu(x) � Es(x), where the spa
es Eu and Es are one-dimensional and dependmeasurably on x, su
h that for �-a.e. x 2 X and for v 2 R2 � f0g;limn!+1 1n log kAn(x):vk = � �(A) if v =2 Eu(x)��(A) if v 2 Eu(x) ;limn!+1 1n log 

A�n(x):v

 = � �(A) if v =2 Es(x)��(A) if v 2 Es(x) ;limn!+1 1n log sin℄(Eu(Tn(x); Es(Tn(x))) = 0:Now we will de�ne the notion of hyperboli
ity for 
o
y
les.De�nition 1. A 
o
y
le A 2 L1M over T : (X;�)  - is 
alled hyperboli
 if the two
onditions below hold:1. Uniform growth of the produ
ts: there exist 
onstants C > 0 and � > 1 su
hthat kAn(x)k > C�n for every n > 0 and a.e. x 2 X:2. Bounded angles: there exist Æ > 0 su
h that ℄(Eu(x); Es(x)) > Æ for a.e. x 2 X:Remark. The �rst 
ondition implies �(A) > 0, hen
e the se
ond one makessense.Remark. One 
an show that the �rst 
ondition does not imply the se
ond one.Our main result isTheorem 2.1. If T is ergodi
 then the set of the 
o
y
les A 2 L1M su
h that eitherA is hyperboli
 or �(A) = 0 is residual in L1M .From the above theorem we will dedu
e its 
ontinuous version. Now we supposethat X is a 
ompa
t Hausdor� spa
e and � is a regular Borel measure on X whi
h isinvariant for T . (T is not assumed to be 
ontinuous). In this setting, we denoteCM = fA : X ! SL(2;R) 
ontinuousg :Theorem 2.2. Let X;T; � be as above. If T is ergodi
 then the set of the 
o
y
lesA 2 CM su
h that either A is hyperboli
 or �(A) = 0 is residual in CM .We remark that the sequen
e an = R log kAnk d� is subadditive (an+m � an+am).Therefore the integrated Lyapunov exponent satisfy the formula�(A) = limn!1 1n ZX log kAnk d� = infn 1n ZX log kAnk d�.The following lemma, adapted from [T℄, gives a property of upper semi-
ontinuityof � and will be essential in the proofs of theorems 1 and 2.3



Lemma 1. Given A 2 L1M , " > 0 and M > 0 there exists Æ > 0 su
h thatkBk1 �M; ZX kB(x)�A(x)k d�(x) < Æ ) �(B) < �(A) + ":Proof. Let n be su
h that1n ZX log kAn(x)k d�(x) < �(A) + ":For given � > 0, we de�ne the sets R = fx 2 X ; kB(x)�A(x)k > �g and S =R [ T�1R [ � � � [ T�n+1R. We have �(R) � Æ� and �(S) � nÆ� . Without loss ofgenerality, we 
an assume that M � kAk1. For x =2 S, we 
laim thatkBn(x)�An(x)k � n�Mn�1:This fa
t 
an be proved by indu
tion as following:

Bj+1(x) �Aj+1(x)

 � 

B(T jx):(Bj(x)�Aj(x))

+ 

(B(T jx)�A(T jx))Aj(x)

 �� M:j�M j�1 + �:M j = (j + 1)�M j :In parti
ular, for x =2 S,kBnxkkAnxk � 1 + kBnx�AnxkkAnxk � 1 + kBnx�Anxk � 1 + n�Mn�1:Choose � > 0 su
h that log �1 + n�Mn�1� < " and then 
hoose Æ > 0 su
h that�(S) < "logM . Hen
e we have�(B) � 1n ZX log kBnk d� = 1n ZX�S log kBnk d�+ 1n ZS log kBnk d� �� 1n ZX�S(log kAnk+ ")d�+ 1n�(S) logMn << �(A) + "+ "n + ":For any two by two real matrix B = (bij), we denotekBkmax = max fjb11j ; jb12j ; jb21j ; jb22jg :Let K > 1 be su
h that K�1 kBk � kBkmax � K kBk for every B. As always, k�kdenotes the usual operator norm, indu
ed by the eu
lidean norm in R2 .Lemma 2. If �(A) > 0 then there exists a measurable 
onjuga
y C : X ! SL(2;R)satisfying limn!�1 1jnj log kC(Tnx)k = 0 (we 
all that su
h a C tempered) su
h that thematrix D(x) = C(Tx)�1A(x)C(x) is diagonal. Moreover, if the angle between EuAand EsA is bounded from zero, then C 
an be 
hosen in L1M .4



Proof. Let wu(x) 2 Eu(x); ws(x) 2 Es(x) be unitary ve
tors su
h that fwu(x); ws(x)gis a positive basis of R2 . Let eC(x) : R2 ! R2 be su
h that eC(x):(1; 0) = wu(x) andeC(x):(0; 1) = ws(x). Hen
e eC(x) has positive determinant, C(x) = �det eC(x)��1=2 eC(x)has determinant 1 and C(Tx)�1A(x)C(x) is a diagonal matrix. In order to estimatekC(x)k, we 
an suppose wu(x) = (1; 0). Hen
e, if 0 < � < � denotes the anglebetween wu(x) and ws(x), we haveeC = � 1 
os �0 sen � � and C = � sen�1=2 � 
os � sen�1=2 �0 sen1=2 � � :Thus kCk � K kCkmax = K sen�1=2 �. Oselede
 theorem informs that�1n log sin �(Tnx)! 0and the proof is �nished.Lemma 3. If T is an aperiodi
 invertible transformation, U is a measurable setwith �(U) > 0 and n � 1, then there exists V � U with �(V ) > 0 and su
h thatV; TV; :::; Tn�1V are disjoint sets.Proof. It follows from Rokhlin-Kakutani lemma.3. The main lemma (lemma 5)De�nition 2. A measurable set Z � X is 
alled a 
oboundary if there exists ameasurable set W � X su
h that Z =W�TW . (� denotes symmetri
 di�eren
e, =means di�ering by a measure zero set).Lemma 4. Given a set F � X with positive measure, there exists a set Z � F withpositive measure whi
h is not a 
oboundary.Proof. See [K℄.Remark. Here the assumption that X is a Lebesgue spa
e is needed.The following lemma, whi
h is essentially due to Knill[K℄, will be the basi
 tool inthe proof of theorem 2.1.Lemma 5. Suppose T is ergodi
. Let Z � X be a positive measure set whi
h is nota 
oboundary. Suppose that n � 1 is su
h that Z; TZ; :::; Tn�1Z are disjoint. Take
o
y
les A 2 L1M with �(A) > 0 and J 2 L1M equal to I in the 
omplementary ofZ[TZ[� � �[Tn�1Z. Suppose that (AJ)n(x):EsA(x) = EuA(x) and (AJ)n(x):EuA(x) =EsA(x) 8x 2 Z. Then �(AJ) = 0.Proof. We analyze two 
ases separately. 5



3.1. First 
ase: n = 1First we need to make some general 
onsiderations. One 
an de�ne the skew-produ
tT �A : X � P1  -as (T �A)(x; v) = (T (x); A(x):v):If �(A) > 0 then there are two measures �u and �s that are invariant for T �A, givenby �u;s(B) = � fx 2 X ; (x;Eu;s(x)) 2 BgIf � : X � P1 ! X denotes the obvious proje
tion then ��(�u) = ��(�s) = � and wesay that �u and �s proje
t on �.Claim 1. If � is ergodi
 and �(A) > 0 then there are only two ergodi
 measuresfor T �A whi
h proje
t on �, namely �u and �s.Proof. Let � be an ergodi
 measure for T �A whi
h proje
ts on �. Let us de�nea fun
tion f : X � P1 ! R by f(x; v) = log kA(x):vkkvkFor �-a.e. x 2 X and all v 2 R2 � f0g, we havelimn!1 1n n�1Xj=0 f Æ (T �A)j(x; v) = � �(A)��(A) if v =2 Es(x)if v 2 Es(x)Therefore, by Birko�'s theorem,� �(x; v) 2 X � P1; v =2 Es(x)	 = 0 or 1:By the same reasoning,� �(x; v) 2 X � P1; v =2 Eu(x)	 = 0 or 1:Thus the only possibilities are � = �s or � = �u and the 
laim is proved.We now return to the proof of the main lemma. The skew-produ
t T � AJ hasthe invariant measure b� = 12(�u + �s):Claim 2. b� is an ergodi
 measure for T �AJ .Proof. Assume that there exists a measurable set Q � X � P1 with 0 < b�(Q) < 1wit
h is invariant for T �AJ . For ea
h x 2 X , denote Qx = fv 2 P1; (x; v) 2 Qg. Byde�nition of b� we 
an suppose that Qx � fEu(x); Es(x)g for every x. Sin
e �(Q) isT -invariant, we have Qx 6= ;. Further, the T -invariant set fx;Qx = fEu(x); Es(x)ggmust have �-measure zero. To simplify notations, let us write Qx = u or s, with theobvious meanings. Let W = fx 2 X ;Qx = ug :6



ThenW�T�1W = fx 2 X ;Qx = u; QTx = sg [ fx 2 X ;Qx = s; QTx = ug = Z:This 
ontradi
ts the assumption that Z is not a 
oboundary.Finally, if we had �(AJ) > 0 then b� would be a measure of the type given by the�rst 
laim. This is 
learly impossible.3.2. Se
ond 
ase: n > 1We will redu
e this 
ase to the �rst one, but again some ba
kground informationis needed. Given a measurable set, one 
an de�ne the indu
ed �rst-return system(U; TU ; �U ) as followsx 2 U ) r(x) = minfn � 1;Tnx 2 Ug and TU (x) = T r(x)x;V � U ) �U (V ) = �(V )�(U) :We 
an also de�ne a indu
ed 
o
y
le AU over this system asx 2 U ) AU (x) = Ar(x)(x):Claims. The system (U; TU ; �U ) is ergodi
 and�(AU ) = �(AU )�(U) :Proofs. See [K℄, lemma 2.2.Returning to the proof, let U = X � (TZ [ � � � [ Tn�1Z) � ZClaim. Z is not a 
oboundary for (U; TU ; �U ).Proof. See [K℄, lemma 3.4.We have x 2 U ) (AJ)U (x) = � (AJ)n(x)A(x) if x 2 ZotherwiseHen
e the �rst 
ase guarantees that �((AJ)U ) = 0 and therefore �(AJ) = 0.4. Proof of theorem 1By lemma 1, 8� > 0, the set fA 2 L1M ; �(A) < �g is open. We will then prove thatthe set fA 2 L1M ; �(A) = 0g is dense in the 
omplementary set of hyperboli
 
o
y
les.We 
an suppose that T is aperiodi
.Take A 2 L1M non-hyperboli
 with �(A) > 0. Given " > 0, we will 
onstru
t Zand J as is lemma 5 and with kJ � Ik1 < ". The wanted perturbation with zeroexponent will be AJ . Denote by Eu(x) � Es(x) the Oselede
 splitting asso
iated toA. The proof now bifur
ates in two 
ases, depending on whether or not the angles℄(Eu(x); Es(x)) are essentially bounded from below.7



4.1. First 
ase: Bounded anglesBy lemma 2, we 
an assume that A is diagonal, with Eu(x) = e1 and Es(x) = e2,where we denote by e1; e2 the dire
tions asso
iated to the ve
tors (1; 0) and (0; 1) ofR2 .The idea to ex
hange the dire
tions is: Choose a pla
e where the expansion isweak for some amount of time. At �rst, take J as to displa
e Eu = e1 but keepinge2 �xed. Now we have to \row against the tide", thus we set J to be an hyperboli
matrix expanding e2 and 
ontra
ting e1. We do this until the displa
ed dire
tion gets
lose to e2 and then, using a rotation, we send it to e2. Now Es = e2 was displa
ed,but we wait until it drifts ba
k near e1. Eventually, we send this dire
tion to e1keeping e2 �xed.Let �(x) be su
h that A(x) = � �(x) 00 �(x)�1 � :We 
an suppose that �(x) > 0. Sin
e A is not hyperboli
, there are integers karbitrarily large su
h that the setF = nx 2 X ; 

Ak(x)

 < (1 + ")k=2ohas positive measure. Fix some k su
h that (1 + ")1�k=2 < " and �(F ) > 0.Sin
e 1n log 

An(x)jEu(x)

 
onverges to �(A) a.e. when n ! 1, 
onvergen
e inmeasure also holds. Therefore if n is large enough then��x 2 X ; 1n log 

An(x)jEu(x)

 > �(A)� "� > 1� �(F ):Hen
e the setF 0 = F \ �x 2 X ; 1n log 

An(x)jEu(x)

 > �(A)� "� == nx 2 X ; 

Ak(x)

 < (1 + ")k=2 and 

An(x)jEu(x)

 > en(�(A)�")ohas positive measure. By lemma 3, there is F 00 � F 0 with positive measure and su
hthat F 00; TF 00; :::; TnF 00 are disjoint. Finally, take a set Z � F 00 with positive measurethat is not a 
oboundary.Now let's 
onstru
t J . Let x 2 Z. De�ne J(x) = � 1 0" 1 �. DenotingD[a℄ = � a 00 a�1 � ;set J(T ix) = D[(1 + ")�1℄ for 1 � i < j(x) � k. We have(AJ)j(x) = D[(1 + ")�j(x)+1�(x):::�(T j(x)�1x)℄� 1 0" 1 � .8



We want (AJ)j(x)(x):(1; 0) to fall in the 
one f(x; y); jxjjyj < "g. For this we need(1 + ")�j(x)+1�(x):::�(T j(x)�1x) < ":Sin
e x 2 F ,(1 + ")�k+1�(x):::�(T k�1x) < (1 + ")�k+1(1 + ")k=2 = (1 + ")1�k=2 < "and therefore we 
an takej(x) = minfj; (1 + ")�j(x)+1�(x):::�(T j(x)�1x) < "g � k:Denote R[a℄ = � 
osa � sinasin a 
osa �and set J(T j(x)x) = R[�(x)℄, where sin�(x) < " is 
hosen so thatJ(T j(x)x):(AJ)j(x)(x):e1 = e2:We will also require that sin�(x) � "2 . This 
an be done by weakening J(T j(x)�1x),if needed.Now set J(T ix) = I for j(x) < i < m(x). We wantAm(x)�j(x)(T j(x)x):(� sin�(x); 
os�(x))to fall in the 
one f(x; y); jyjjxj < "g, that is, we want thath�(T j(x)x):::�(Tm(x)�1x)i�2 < " tan�(x):Sin
e �(T j(x)x):::�(Tn�1x) > en(�(A)�")(sup �)k ;if n is 
hosen large enough the desired m(x) will exist and will be less than n:At the end, set J(Tm(x)x) = � 1 0�(x) 1 �, where �(x) is 
hosen so that (AJ)m(x)(x)e2 =e1. All the J(�) matri
es employed have distan
e to I less than, say, 10".4.2. Se
ond 
ase: Unbounded anglesThe idea now is: Choose a pla
e where Es and Eu are 
lose together and then takefor J a rotation sending Eu to Es. Then Es will be displa
ed and (setting J = I)we wait until this displa
ed Es is sent 
lose to Eu (and mu
h 
loser to Eu than Esis). Then we take J as to send this dire
tion to Eu and �xing the dire
tion Es.Denote  (x) = ℄(Eu(x); Es(x)). We have 0 <  (x) < �: We 
an assume that theset F = fx 2 X ; (x) < "g has positive measure. By Oselede
 theorem,�1n log sin (Tnx)! 0 a.e. when n!1;9



therefore 
onvergen
e in measure also holds. The same applies to1n log 

An(x)jEu(x)



An(x)jEs(x)

 ! 2�(A)Hen
e the measure of the setFn = (x 2 X ; �1n log sin (Tnx) > " and 1n log 

An(x)jEu(x)



An(x)jEs(x)

 > 2�(A)� ")tends to zero when n!1. We �x some n satisfyinge"n �12e(2�(A)�")n � 1��1 < " and �(Fn) > 1� �(F ):(Of 
ourse, we 
an assume that " < �(A):) Thus the set F 0 = F \ Fn has pos-itive measure. By lemma 3, there exist F 00 � F 0 of positive measure su
h thatF 00; TF 00; :::; Tn+1F 00 are disjoint. Eventually, we take a set Z � F 00 of positive mea-sure whi
h is not a 
oboundary.Now let's 
onstru
t J . We 
an assume that Eu(x) = e1 8x 2 X . Let x 2 Z.Set J(x) = R[ (x)℄, a rotation through angle  (x). Then set J(T ix) = I para1 � i < m(x). We want the dire
tion Am(x)�1(x):J(x):Es(x) to get very 
lose to e1,a
tually, mu
h 
loser to e1 than Es(Tm(x)�1x) is. Moreover, we want that m(x) � n.At the end we set J(Tm(x)x) as a paraboli
 matrix that �xes Es(Tm(x)�1x) and sendsAm(x)�1(x):J(x):Es(x) to Eu(Tm(x)�1x). To this aim we will need the followingestimateClaim. Let 0 < � < �, � � minf�; � � �g and u; v; w 2 R2 � f0g be su
h that℄(u; v) = �; ℄(v; w) = �; ℄(u;w) = � + �:Then the matrix J with det J = 1 that �xes u and sends w to a multiple of v satis�eskJ � Ik < K1 jtan �jsin2 � ;where K1 is a 
onstant.Proof of the 
laim. Repla
ing, if ne
essary, u by �u, we 
an suppose that � � �2 .We 
an also suppose thatu = (1; 0); v = (
os�; sin�); w = (
os(�+ �); sin(� + �)):Thus the matrix is J = � 1 b0 1 �where b = 
otg�� 
otg(�+ �) < �sin2 � < jtan �jsin2 �and the 
laim follows. 10



Now denote  j =  (T jx);w0 = J(x):Es(x) = (
os 2 0; sin 2 0);wj = Aj(x):w0 = wuj (1; 0) + wsj (
os j ; sin j);and �j = ℄(wj ; (1; 0)):We have ws0 = sin 2 0sin 0 < 2 and wu0 = ws0 
os 0 � 
os 2 0 = �1:Also jtan �j j = ��wsj �� sin j��wuj + wsj 
os j�� �� (sin j) ��wuj ����wsj �� � 1!�1 == (sin j) 

Aj(x)jEu(x)



Aj(x)jEs(x)

 jwu0 jjws0j � 1!�1 << (sin j) 12 

Aj(x)jEu(x)



Aj(x)jEs(x)

 � 1!�1 :For j = n we havejtan �njsin2  n � (sin n)�1 12 

An(x)jEu(x)



An(x)jEs(x)

 � 1!�1 << e"n � 12e(2�(A)�")n � 1��1 < ":This guarantees that if we setm(x) = min�j; jtan �j jsin2  j < "�then m(x) � n and we 
an �nd the wanted paraboli
 matrix J(Tm(x)x) with


J(Tm(x))� I


 < K1":
11



5. Proof of theorem 2By lemma 1, the set E� = fA 2 CM ; �(A) < �gis open 8� > 0. It remains to show that it is dense. Take A 2 CM and " > 0. Bytheorem 2.1, there is eA 2 L1M near A with �( eA) = 0. Write eA = A:(I + J) withJ 2 L1(X;M(2;R)); kJk1 < ":By Lusin's theorem (see [R1℄, for instan
e), there is J 0 2 C(X;M(2;R)) with �[J 0 6=J ℄ < Æ (Æ will be spe
i�ed later) andsupx kJ 0(x)kmax � supx kJ(x)kmax(hen
e kJ 0k1 �
onstant.kJk1). Repla
ing J 0 byJ 0 + Ipdet(J 0 + I) � Iwe 
an assume that det(J 0 + I) = 1. Let B = A:(I + J 0). ThuskB � Ak1 = kJ 0k1 � 
onstant:"and Z 


B � eA


 d� � kAk1 Z 


J � J 0


 d� < 
onstant. kAk1 "Æ:For Æ suitably 
hosen, this implies �(B) < �.Remark. I believe that this theorem 
an be extended to the 
ontinuous bundle
ase, but I did not 
he
k the details.6. Appendix. Existen
e of dis
ontinuity pointsIt is easy to 
onstru
t non-hyperboli
 
o
y
les with positive exponent if the system isnot uniquely ergodi
, for one 
an even 
hoose matri
es that 
ommute. This is 
learlyimpossible in the uniquely ergodi
 
ase.Proposition 1. If (X;T; �) is ergodi
 but not uniquely ergodi
 then the fun
tion� : CM ! R is dis
ontinuous.Proof. Assume, without loss of generality, that the support of � is X . Take anotherinvariant measure �. Take a 
ontinuous fun
tion f : X ! R su
h that R fd� 6= 0 butR fd� = 0. De�ne the 
o
y
leA(x) = � ef(x) 00 e�f(x) � :12



We have �(A) = ��R fd���. Besides, for every " > 0 and n0 > 0 there is n > n0 su
hthat the (open) set 8<:x 2 X ; 1n ������n�1Xj=0 f(T jx)������ < "9=;is not empty and thus its �-measure is positive. This shows that A is not hyperboli
.Remark. If the support of � is not a minimal set for T then one 
an even takef � 0 in the proof.As a 
onsequen
e of Herman examples (see [H℄, x4) we haveProposition 2. For every irrational rotation of the torus Tn, the fun
tion� : C(Tn; SL(2;R)) ! Ris dis
ontinuous.This theorem generalizes a previous result of Furman [F℄, whi
h says that there issome irrational rotation su
h that � is dis
ontinuous.Referen
es[F℄ Furman, A., On the multipli
ative ergodi
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y
les: Dis
ontinuity andthe problem of positivity, Le
ture Notes in Math.(1991), 1486, Lyapunov Expo-nents (Oberwolfa
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