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Abstract

For fixed ergodic dynamical systems over a compact space, we show that
there is a residual set of continuous SL(2, R)-cocycles which are either hyperbolic
or have Lyapunov exponent zero.

1. Introduction

Let T : (X, u) < be an ergodic automorphism of a standard probability space. To a
given bounded measurable mapping A : X — SL(2,R), which we call a cocycle, we
can associate its upper Lyapunov exponent

: 1 n—1
A(A) = ngrfoo - log ||A(T x) - A(x)” > 0.
We are interested in continuity (or discontinuity) properties of the function A :
L>(X,SL(2,R)) — [0,00), where the transformation 7" is kept fixed. We con-
sider also the situation where X is a compact space X. Then we study the function
A:C(X,SL(2,R)) — [0,00) over the continuous cocycles.

It is easy to see that A is upper-semicontinuous. However, Knill [K] showed
that A : L*°(X,SL(2,R)) — R is never continuous if T is aperiodic (i.e., periodic
points have measure zero). Actually, he proves that the subset of L*(X,SL(2,R))
consisting of the cocycles with positive exponent is not open, thus A can drop to zero
for small perturbations. An example a similar situation is constructed in [T], where
perturbations with small exponent are obtained by multiplying a cocycle by some
constant matrices.

On the other hand, if a cocycle is hyperbolic (meaning that the product matrices
grow uniformly) then it has positive exponent by definition and this positivity is
robust by perturbations. Moreover, as Ruelle proved [R2], the function A is even
real-analytic (in Banach-algebra sense) in the open set of hyperbolic cocycles.

Our main result is the following: If T his ergodic then the set of cocycles that are
either hyperbolic or have zero Lyapunov exponent is a residual set in L (X, SL(2,R))
or C(X,SL(2,R)), according to the case considered. In other words, if a cocycle with
positive exponent is not hyperbolic then its exponent can drop to zero if we perturb the



cocycle. The techniques used in the proof are similar to those of [K]. The basic idea
for vanishing the exponent is to exchange the expanding and contracting directions,
noticing that this can be done in the absence of hyperbolicity.

This fact leads us to ask whether or not do non-hyperbolic cocycles with positive
exponent exist for a given continuous dynamical system (X,7,u). The answer is
easily seem (see section 6) to be “yes” if T' is not uniquely ergodic and is unknown in
the general case. Though, if T" is an irrational translation of the torus T", n > 1, the
answer is positive, due to Herman’s examples in [H], §4. The papers [W] and [F] deal
with cocycles over uniquely ergodic transformations.

We remark that the theorem does not extend to the C! topology. Young exhibits
[Y] open subsets of C*(X, SL(2,R)) made up of non-hyperbolic cocycles with positive
exponent, where the base transformations are automorphisms of the two-torus.

Our results should be compared to Mafié’s claim that in the space of C! area
preserving diffeomorfisms of a compact surface there is a residual subset consisting of
diffeomorfisms that either are Anosov or have zero Lyapunov exponent. The posthu-
mous article [M] is a sketch of a possible proof. Clearly Mafié’s considerations are
more delicate than ours.

It is a common belief that positive exponents are prevalent even among non-
hyperbolic systems, but there is no general theorem in this direction. Therefore our
set of cocycles with exponent zero, although residual on the non-hyperbolic part, is
probably “thin” in some measure sense. The extreme discontinuity of the Lyapunov
exponent must be one of the reasons why it is hard to prove that specific systems
have positive exponent.

2. Preliminaries

Let (X, p) be a Lebesgue probability space and T' : X < an automorphism of it.
Denote

LS ={A: X - SL(2,R) measurable; ||A|| is essencially bounded}
and ||A||,, = esssup||Az||.
Given A € L§3, we denote

AT tz)--- A(x) ifn>0
An(g) = I ifn =0
AN Trx) - A YT t2) ifn>0

Oseledec theorem states that the limit

. 1 n
AAz) = Tim = log||4"(z)]

exists for p-a.e. © € X. (It does not depend on z if T is ergodic). We define the
Lyapunov exponent as

AA) = [ A (o)



(Maybe a better name would be “integrated LE”. Besides, one usually says that there
are two exponents, A(A4,z) and —A(A4,z).) If A(A) > 0 then there exists a splitting
R? = E¥%(z) ® E*(z), where the spaces E* and E® are one-dimensional and depend
measurably on , such that for y-a.e. x € X and for v € R? — {0},

{ A(A) if v ¢ E¥(z)
—A(A) if v e E%(z)

(
{ A(A) if v ¢ E*(x)
—A(A) ifv e Ef(x)

1
lim —logl||A™(z).v]|
n

n—-+00

lim 1 log | A" (z).v||

n—+oo n
. ]- . u n S n —
ngr}rlooﬁlogsmé(E (T"(z), E°(T"(z))) = 0.

Now we will define the notion of hyperbolicity for cocycles.

Definition 1. A cocycle A € LS} over T : (X, u) < is called hyperbolic if the two
conditions below hold:

1. Uniform growth of the products: there exist constants C' > 0 and 7 > 1 such
that ||A™(z)|| > Ct" for every n > 0 and a.e. x € X.

2. Bounded angles: there exist § > 0 such that £(E%(z), E*(x)) > 0 for a.e. v € X.

Remark. The first condition implies A(A) > 0, hence the second one makes
sense.

Remark. One can show that the first condition does not imply the second one.

Our main result is

Theorem 2.1. If T is ergodic then the set of the cocycles A € L$; such that either
A is hyperbolic or A(A) = 0 is residual in L.

From the above theorem we will deduce its continuous version. Now we suppose
that X is a compact Hausdorff space and u is a regular Borel measure on X which is
invariant for T'. (T is not assumed to be continuous). In this setting, we denote

Cy ={A: X — SL(2,R) continuous} .

Theorem 2.2. Let X,T,u be as above. If T is ergodic then the set of the cocycles
A € Cypy such that either A is hyperbolic or A(A) = 0 is residual in Cjy.

We remark that the sequence a, = [log||A™|| dp is subadditive (antm < an+am)-
Therefore the integrated Lyapunov exponent satisfy the formula

1 1
A(4) = lim —/Xlog||A”||d,u:igfﬁ/XlogHAanu.

n—oo N

The following lemma, adapted from [T], gives a property of upper semi-continuity
of A and will be essential in the proofs of theorems 1 and 2.



Lemma 1. Given A € L5}, € > 0 and M > 0 there exists 6 > 0 such that
1Bl < M, / |1B(z) — A(z)|| dp(z) <& = A(B) <A(A) +e.

b'e

Proof. Let n be such that
1 n
+ [ ogll4" @) dute) < Ac4) +e.
nJx

For given v > 0, we define the sets R = {z € X;||B(x) — A(z)|| > v} and S =

RUT™'RU---UT " R. We have u(R) < ¢ and p(S) < 22. Without loss of
generality, we can assume that M > [|Al|_ . For ¢ S, we claim that

1B (@) — A™(@)]| < nw M

This fact can be proved by induction as following:

|B () — AT (@)|| < || B(T72).(B () — A (2)) || + ||(B(T7x) — A(T7 ) A (z) || <
< MjvMP7 4 v.MI = (j + 1)vM.
In particular, for « ¢ S,
1B || |B"z — A"z|| 1
<l+ ——— <14||B"z—A"z|| <14+nvM" .
| Aal] T4wal] | |

Choose v > 0 such that log (1 4+ nvM" ') < € and then choose § > 0 such that

1(S) < foggz- Hence we have

AB) < 3 [ oglpldn = [ loglBlda > [ loglidu <
nJx nJx-s nJs
1

1
1 / (log A" ]| + ) + - pu(S) log M™ <
n X_-S n

IN

< A(A)+s+%+a.l

For any two by two real matrix B = (b;;), we denote

| B|| oy = max {|b11], |bi2], [b21], [b22]} -

max —

Let K > 1 be such that K !||B|| < ||B|| < K ||B|| for every B. As always, |||
denotes the usual operator norm, induced by the euclidean norm in R?.

Lemma 2. If A(A) > 0 then there exists a measurable conjugacy C : X — SL(2,R)
satisfying lirjrzl +log||C(T"z)|| = 0 (we call that such a C tempered) such that the
n—xT oo

In]
matrix D(z) = C(Tz)"'A(z)C(x) is diagonal. Moreover, if the angle between EY
and E% is bounded from zero, then C can be chosen in L%;.



Proof. Let w*(z) € E*(z),w*(x) € E*(z) be unitary vectors such that {w"(x), w*(z)}

is a positive basis of R%. Let C(z) : R2 — R? be such that C(z).(1,0) = w*(z) and
~ ~ ~ N—1/2 o
C(x).(0,1) = w®(z). Hence C(x) has positive determinant, C(x) = (det C(m)) C(x)
has determinant 1 and C(T'z) ! A(z)C(z) is a diagonal matrix. In order to estimate

[|C(2)||, we can suppose w*(x) = (1,0). Hence, if 0 < § < 7 denotes the angle
between w¥(x) and w®(x), we have

~ 1 cosf sen~/20 cosfsen—1/26
C_<0 sen0> andC-( 0 senl/2 9 )

Thus ||C|| < K ||C||..... = K sen='/26. Oseledec theorem informs that

max
1 ]
— logsin#(T"x) — 0
and the proof is finished. H

Lemma 3. If T is an aperiodic invertible transformation, U is a measurable set
with p(U) > 0 and n > 1, then there exists V. C U with u(V) > 0 and such that
V,TV,..., T" 'V are disjoint sets.

Proof. It follows from Rokhlin-Kakutani lemma.

3. The main lemma (lemma 5)

Definition 2. A measurable set Z C X is called a coboundary if there exists a
measurable set W C X such that Z = WATW . (A denotes symmetric difference, =
means differing by a measure zero set).

Lemma 4. Given a set F' C X with positive measure, there exists a set Z C F with
positive measure which is not a coboundary.

Proof. See [K].

Remark. Here the assumption that X is a Lebesgue space is needed.

The following lemma, which is essentially due to Knill[K], will be the basic tool in
the proof of theorem 2.1.

Lemma 5. Suppose T is ergodic. Let Z C X be a positive measure set which is not
a coboundary. Suppose that n > 1 is such that Z,TZ,...,T" 'Z are disjoint. Take
cocycles A € LY with A(A) > 0 and J € LS} equal to I in the complementary of
ZUTZU---UT" 1Z. Suppose that (AJ)"(z).E% (z) = EY(z) and (AJ)"(z).E%(z) =
ES(x) Vo € Z. Then A(AJ) =0.

Proof. We analyze two cases separately.



3.1. First case: n=1

First we need to make some general considerations. One can define the skew-product

TxA:X xP!

as
(T x A)(z,v) = (T'(x), A(z).v).

If A(A) > 0 then there are two measures u* and p® that are invariant for 7' x A, given
by
55 (B) = p{z € X; (¢, E*()) € B}

If 7: X x P! = X denotes the obvious projection then 7, (u%) = . (u°) = p and we
say that pu* and p® project on p.

Claim 1. If p is ergodic and A(A) > 0 then there are only two ergodic measures
for T' x A which project on p, namely p* and p?.

Proof. Let n be an ergodic measure for T' x A which projects on u. Let us define
a function f: X x P! = R by

f(z,v) = log %

For p-a.e. € X and all v € R? — {0}, we have

= _— A(A ifvé ES(x
T}EI;OEZfo(TxA)J(m,v)={ _15(2) ifuiEsE;v;
7=0

Therefore, by Birkoff’s theorem,

n{(z,v) € X x P50 ¢ E5(x)} =0 or 1.
By the same reasoning,

n{(z,v) € X xPv ¢ E*(x)} =0or L.

Thus the only possibilities are n = p® or n = p* and the claim is proved.
We now return to the proof of the main lemma. The skew-product 7' x AJ has
the invariant measure

1
p= gt +p).

Claim 2. [i is an ergodic measure for T' x AJ.

Proof. Assume that there exists a measurable set @ C X x P! with 0 < (Q) < 1
witch is invariant for T x AJ. For each x € X, denote Q, = {v € P!; (z,7) € Q}. By
definition of iz we can suppose that @, C {E*(x), E*(x)} for every x. Since 7(Q) is
T-invariant, we have @, # (). Further, the T-invariant set {z; Q, = {E%(z), E*(x)}}
must have p-measure zero. To simplify notations, let us write @), = w or s, with the

obvious meanings. Let
W={ze€X;Q,=u}.



Then
WAT'W ={z € X;Q, =u, Qry =s}U{z € X;Q, =5, Qr, =u} = Z.

This contradicts the assumption that Z is not a coboundary.
Finally, if we had A(AJ) > 0 then 1 would be a measure of the type given by the
first claim. This is clearly impossible.

3.2. Second case: n > 1

We will reduce this case to the first one, but again some background information
is needed. Given a measurable set, one can define the induced first-return system
(U, Ty, pu) as follows

z€e€U=r(z)=min{n > 1;T"z € U} and Ty(z) = T @y,

VcU:uU(V)z%.

We can also define a induced cocycle Ay over this system as
reU= Ay(z) = A" (z).
Claims. The system (U, Ty, pu) is ergodic and

A(Ay)

M) =)

Proofs. See [K], lemma 2.2.

Returning to the proof,let U = X — (TZU---UT" 'Z)D> Z
Claim. Z is not a coboundary for (U, Ty, pv)-

Proof. See [K], lemma 3.4.

We have

(AN)™(z) UHxeZ

relU= (A)u(z) = { A(z) otherwise

Hence the first case guarantees that A((AJ)y) = 0 and therefore A(AJ) = 0.

4. Proof of theorem 1

By lemma 1, YA > 0, the set {A € L$7; A(A) < A} is open. We will then prove that
the set {A € L37; A(A) = 0} is dense in the complementary set of hyperbolic cocycles.
We can suppose that T is aperiodic.

Take A € L3 non-hyperbolic with A(A) > 0. Given € > 0, we will construct Z
and J as is lemma 5 and with ||J —I|| , < e. The wanted perturbation with zero
exponent will be AJ. Denote by E%(x) ® E®(x) the Oseledec splitting associated to
A. The proof now bifurcates in two cases, depending on whether or not the angles
L(E“(z), E*(x)) are essentially bounded from below.



4.1. First case: Bounded angles

By lemma 2, we can assume that A is diagonal, with E%(z) = e; and E*(z) = eo,
where we denote by e, ey the directions associated to the vectors (1,0) and (0,1) of
R?.

The idea to exchange the directions is: Choose a place where the expansion is
weak for some amount of time. At first, take J as to displace E* = e; but keeping
ey fixed. Now we have to “row against the tide”, thus we set J to be an hyperbolic
matrix expanding es and contracting e;. We do this until the displaced direction gets
close to es and then, using a rotation, we send it to e;. Now E® = ey was displaced,
but we wait until it drifts back near e;. Eventually, we send this direction to e;
keeping e, fixed.

Let p(x) be such that

We can suppose that p(z) > 0. Since A is not hyperbolic, there are integers k
arbitrarily large such that the set

F={zeX;|a"@)]| < (1+2)?}
has positive measure. Fix some k such that (1 +¢)'~*/2 < ¢ and u(F) > 0.

Since Llog ||A” )| Bu(a) || converges to A(A) a.e. when n — oo, convergence in
measure also holds. Therefore if n is large enough then

u{xeX log || A™ ()| g () || > A(A) — }>1—M(F).
Hence the set
F' = Fm{a:eX log || A™ ()| g (a) ||>AA)—E}=

{

has positive measure. By lemma 3, there is F"' C F' with positive measure and such
that B, TF",...,T"F" are disjoint. Finally, take a set Z C F" with positive measure
that is not a coboundary.

Now let’s construct J. Let € Z. Define J(z) = <

D[a]=<8 a(_)1>’

set J(T'z) = D[(1+¢)7 '] for 1 <i < j(z) < k. We have

(@) < (1 +8)" and A" (@)| e || > " @79}

1 0

-1 > Denoting

(A7) = DIt + &) 7% pla)cp@ @) (1] ).



We want (A.J)7(®) (x).(1,0) to fall in the cone {(z,y); % < e}. For this we need

(14 &)@+ p(z). . p(T7 @1 g) < e.
Since = € F,
(1T4e) " pa).p(TF 1) < M +e) A+ )2 = (142 <e
and therefore we can take
j(z) = min{j; (1 + &)@ p(z)..p(T7®z) < e} < k.
Denote

sina cosa

Rl - < cosa —sina >

and set J(77®)z) = R[a(z)], where sin a(x) < ¢ is chosen so that
J(TI@ ) (AT ) (z).e1 = e.

We will also require that sina(z) > 5. This can be done by weakening J(TI@ =gy,
if needed.
Now set J(Tz) = I for j(z) < i < m(z). We want

A™M@) =i @) (i@ gy (—sin (), cos a(x))
to fall in the cone {(z,y); % < ¢}, that is, we want that

, —2
[p(TJ(z)x)...p(Tm(x)_lx) < etan a(z).

Since
en(A(A)—e)

TV gy p(T" ) > ——
p( )--p( ) sup )"

if n is chosen large enough the desired m(z) will exist and will be less than n.

At the end, set J(T™(@)z) = < ﬁ(l:r) (1) > , where 3(z) is chosen so that (AJ)™®) (z)e; =
€1.

All the J(-) matrices employed have distance to I less than, say, 10e.

4.2. Second case: Unbounded angles

The idea now is: Choose a place where E° and E* are close together and then take
for J a rotation sending E* to E°. Then E° will be displaced and (setting J = I)
we wait until this displaced E? is sent close to E* (and much closer to E* than E*
is). Then we take J as to send this direction to E* and fixing the direction E*.

Denote 1 (z) = £L(E%(x), E*(x)). We have 0 < ¢(x) < w. We can assume that the
set F' = {z € X;¢(z) < €} has positive measure. By Oseledec theorem,

-1
— logsiny(T"z) — 0 a.e. when n — oo,
n



therefore convergence in measure also holds. The same applies to

1 A" @) B |

- log ||A”(x) — 2A(A)

o (@)

Hence the measure of the set

|A™ (@) |5+ o) |
| An(2)

-1 1
F,=qx € X;—logsiny(T"z) > ¢ and — log
n n e |

>2A(4) — 5}
tends to zero when n — co. We fix some n satisfying
e (le(ZA(A)’E)” - 1)_1 < ¢ and p(F, -
2 p(Fn) > 1 — p(F).

(Of course, we can assume that e < A(A).) Thus the set F' = F N F, has pos-
itive measure. By lemma 3, there exist F'' C F' of positive measure such that
F'" TF", . T"1F" are disjoint. Eventually, we take a set Z C F" of positive mea-
sure which is not a coboundary.

Now let’s construct J. We can assume that E%(x) = e; Vo € X. Let ¢ € Z.
Set J(x) = R[¢(x)], a rotation through angle ¢ (z). Then set J(T%z) = I para
1 <i < m(x). We want the direction A"™®)~1(z).J(x).E*(x) to get very close to ey,
actually, much closer to e; than E*(T™(*)~1z) is. Moreover, we want that m(z) < n.
At the end we set J(T"™(®)z) as a parabolic matrix that fixes E*(T"(*)~'z) and sends
Am@)=1(g) J(2). B (x) to B¥(T™®~1z). To this aim we will need the following
estimate

Claim. Let 0 < ¢ < 7, § < min{p, ™ — ¢} and u,v,w € R — {0} be such that

Llu,v) =¢, L(v,w)=10, L(u,w)=2~0-+ ¢.
Then the matrix J with det J = 1 that fixes v and sends w to a multiple of v satisfies

[tan 0|

J-I| < Ky ——,
I 1< Ky

where K is a constant.
Proof of the claim. Replacing, if necessary, u by —u, we can suppose that ¢ < 7.
We can also suppose that

u=(1,0), v=/(cosgp,sing), w = (cos(¢p+0),sin(¢ + 6H)).

(3 )

b = cotg d — cotg(p + 6) <

Thus the matrix is

where
0 [tan 6|

sin? ¢  sin®¢

and the claim follows.

10



Now denote '
v =¢(T7z),
wo = J(x).E®(x) = (cos 2¢y, sin 2¢),
wj = A (x).wo = w¥(1,0) + w(cos b, sin¢y),

and
9]' = K(’w]', (]., 0))
We have 20
sin 0
wy = . < 2 and w§ = wcosPy — cos2yy = —1.
Also
w? | siny;
[tand;| = | j| Vi

|w + wj 0051/1]

S SIHQ,ZJ] <| ]| >

-1
. <||A Dl o] 1) _

|47 (@) 5 (|| [

-1
]- “a:
< (siny) (5 ii()H 1> .

For j = n we have

[tan8,,|

sin? 1y,

IN

-1
oyt (LA @l
i n) (2 @)oo <

< e (Ber=on 1) e

This guarantees that if we set

. { |tan 0; | }
m(z) = min{ j; ——— <¢
sin” 1

then m(z) < n and we can find the wanted parabolic matrix J(T™®)z) with

HJ(Tm(z)) - IH <K ®l

11



5. Proof of theorem 2

By lemma 1, the set
Ey={AcCy; A(4) < A}

is open VA > 0. It remains to show that it is dense. Take A € Cy and € > 0. By
theorem 2.1, there is A € L§j near A with A(4) =0. Write A = A.(I + J) with

J e L¥(X, M(2,R)), |||l <&

By Lusin’s theorem (see [R1], for instance), there is J' € C(X, M (2,R)) with u[J' #
J] < 0 (0 will be specified later) and

Sup [|J'(2) | ax < 5P 1 (2) [l

(hence [|J'||,, <constant.||J||, ). Replacing J' by

J+1
det(J' + 1)

we can assume that det(J' + 1) = 1. Let B= A.(I + J'). Thus
|IB—All, =7l < constant.e

and

/ HB - ZH dp < ||All / HJ —J H dp < constant. ||A]| 9.

For § suitably chosen, this implies A(B) < A. R
Remark. I believe that this theorem can be extended to the continuous bundle
case, but I did not check the details.

6. Appendix. Existence of discontinuity points

It is easy to construct non-hyperbolic cocycles with positive exponent if the system is
not uniquely ergodic, for one can even choose matrices that commute. This is clearly
impossible in the uniquely ergodic case.

Proposition 1. If (X, T, u) is ergodic but not uniquely ergodic then the function
A : Cpr — R is discontinuous.

Proof. Assume, without loss of generality, that the support of p is X. Take another
invariant measure v. Take a continuous function f : X — R such that [ fdu # 0 but
J fdv = 0. Define the cocycle

12



We have A(4) = |f fdu|. Besides, for every € > 0 and ng > 0 there is n > ng such
that the (open) set
1 n—1
X J
T € = Zf(T z) <e

7=0
is not empty and thus its p-measure is positive. This shows that A is not hyperbolic. B
Remark. If the support of p is not a minimal set for T then one can even take

f >0 in the proof.
As a consequence of Herman examples (see [H], §4) we have

Proposition 2. For every irrational rotation of the torus T™, the function
A:C(T",SL(2,R)) - R
is discontinuous.

This theorem generalizes a previous result of Furman [F], which says that there is
some irrational rotation such that A is discontinuous.
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