
Disontinuity of the Lyapunov exponent fornon-hyperboli oylesJairo BohiDeember 7, 1999AbstratFor �xed ergodi dynamial systems over a ompat spae, we show thatthere is a residual set of ontinuous SL(2;R)-oyles whih are either hyperbolior have Lyapunov exponent zero.1. IntrodutionLet T : (X;�) - be an ergodi automorphism of a standard probability spae. To agiven bounded measurable mapping A : X ! SL(2;R), whih we all a oyle, wean assoiate its upper Lyapunov exponent�(A) = limn!+1 1n log A(Tn�1x) � � �A(x) � 0:We are interested in ontinuity (or disontinuity) properties of the funtion � :L1(X;SL(2;R)) ! [0;1), where the transformation T is kept �xed. We on-sider also the situation where X is a ompat spae X . Then we study the funtion� : C(X;SL(2;R)) ! [0;1) over the ontinuous oyles.It is easy to see that � is upper-semiontinuous. However, Knill [K℄ showedthat � : L1(X;SL(2;R)) ! R is never ontinuous if T is aperiodi (i.e., periodipoints have measure zero). Atually, he proves that the subset of L1(X;SL(2;R))onsisting of the oyles with positive exponent is not open, thus � an drop to zerofor small perturbations. An example a similar situation is onstruted in [T℄, whereperturbations with small exponent are obtained by multiplying a oyle by someonstant matries.On the other hand, if a oyle is hyperboli (meaning that the produt matriesgrow uniformly) then it has positive exponent by de�nition and this positivity isrobust by perturbations. Moreover, as Ruelle proved [R2℄, the funtion � is evenreal-analyti (in Banah-algebra sense) in the open set of hyperboli oyles.Our main result is the following: If T his ergodi then the set of oyles that areeither hyperboli or have zero Lyapunov exponent is a residual set in L1(X;SL(2;R))or C(X;SL(2;R)), aording to the ase onsidered. In other words, if a oyle withpositive exponent is not hyperboli then its exponent an drop to zero if we perturb the



oyle. The tehniques used in the proof are similar to those of [K℄. The basi ideafor vanishing the exponent is to exhange the expanding and ontrating diretions,notiing that this an be done in the absene of hyperboliity.This fat leads us to ask whether or not do non-hyperboli oyles with positiveexponent exist for a given ontinuous dynamial system (X;T; �). The answer iseasily seem (see setion 6) to be \yes" if T is not uniquely ergodi and is unknown inthe general ase. Though, if T is an irrational translation of the torus Tn, n � 1, theanswer is positive, due to Herman's examples in [H℄, x4. The papers [W℄ and [F℄ dealwith oyles over uniquely ergodi transformations.We remark that the theorem does not extend to the C1 topology. Young exhibits[Y℄ open subsets of C1(X;SL(2;R)) made up of non-hyperboli oyles with positiveexponent, where the base transformations are automorphisms of the two-torus.Our results should be ompared to Ma~n�e's laim that in the spae of C1 areapreserving di�eomor�sms of a ompat surfae there is a residual subset onsisting ofdi�eomor�sms that either are Anosov or have zero Lyapunov exponent. The posthu-mous artile [M℄ is a sketh of a possible proof. Clearly Ma~n�e's onsiderations aremore deliate than ours.It is a ommon belief that positive exponents are prevalent even among non-hyperboli systems, but there is no general theorem in this diretion. Therefore ourset of oyles with exponent zero, although residual on the non-hyperboli part, isprobably \thin" in some measure sense. The extreme disontinuity of the Lyapunovexponent must be one of the reasons why it is hard to prove that spei� systemshave positive exponent.2. PreliminariesLet (X;�) be a Lebesgue probability spae and T : X  - an automorphism of it.Denote L1M = fA : X ! SL(2;R) measurable; kAk is essenially boundedgand kAk1 = ess sup kAxk :Given A 2 L1M , we denoteAn(x) =8<: A(Tn�1x) � � �A(x)IA�1(Tnx) � � �A�1(T�1x) if n > 0if n = 0if n > 0Oselede theorem states that the limit�(A; x) = limn!+1 1n log kAn(x)kexists for �-a.e. x 2 X . (It does not depend on x if T is ergodi). We de�ne theLyapunov exponent as �(A) = ZX �(A; x)d�(x)2



(Maybe a better name would be \integrated LE". Besides, one usually says that thereare two exponents, �(A; x) and ��(A; x).) If �(A) > 0 then there exists a splittingR2 = Eu(x) � Es(x), where the spaes Eu and Es are one-dimensional and dependmeasurably on x, suh that for �-a.e. x 2 X and for v 2 R2 � f0g;limn!+1 1n log kAn(x):vk = � �(A) if v =2 Eu(x)��(A) if v 2 Eu(x) ;limn!+1 1n log A�n(x):v = � �(A) if v =2 Es(x)��(A) if v 2 Es(x) ;limn!+1 1n log sin℄(Eu(Tn(x); Es(Tn(x))) = 0:Now we will de�ne the notion of hyperboliity for oyles.De�nition 1. A oyle A 2 L1M over T : (X;�)  - is alled hyperboli if the twoonditions below hold:1. Uniform growth of the produts: there exist onstants C > 0 and � > 1 suhthat kAn(x)k > C�n for every n > 0 and a.e. x 2 X:2. Bounded angles: there exist Æ > 0 suh that ℄(Eu(x); Es(x)) > Æ for a.e. x 2 X:Remark. The �rst ondition implies �(A) > 0, hene the seond one makessense.Remark. One an show that the �rst ondition does not imply the seond one.Our main result isTheorem 2.1. If T is ergodi then the set of the oyles A 2 L1M suh that eitherA is hyperboli or �(A) = 0 is residual in L1M .From the above theorem we will dedue its ontinuous version. Now we supposethat X is a ompat Hausdor� spae and � is a regular Borel measure on X whih isinvariant for T . (T is not assumed to be ontinuous). In this setting, we denoteCM = fA : X ! SL(2;R) ontinuousg :Theorem 2.2. Let X;T; � be as above. If T is ergodi then the set of the oylesA 2 CM suh that either A is hyperboli or �(A) = 0 is residual in CM .We remark that the sequene an = R log kAnk d� is subadditive (an+m � an+am).Therefore the integrated Lyapunov exponent satisfy the formula�(A) = limn!1 1n ZX log kAnk d� = infn 1n ZX log kAnk d�.The following lemma, adapted from [T℄, gives a property of upper semi-ontinuityof � and will be essential in the proofs of theorems 1 and 2.3



Lemma 1. Given A 2 L1M , " > 0 and M > 0 there exists Æ > 0 suh thatkBk1 �M; ZX kB(x)�A(x)k d�(x) < Æ ) �(B) < �(A) + ":Proof. Let n be suh that1n ZX log kAn(x)k d�(x) < �(A) + ":For given � > 0, we de�ne the sets R = fx 2 X ; kB(x)�A(x)k > �g and S =R [ T�1R [ � � � [ T�n+1R. We have �(R) � Æ� and �(S) � nÆ� . Without loss ofgenerality, we an assume that M � kAk1. For x =2 S, we laim thatkBn(x)�An(x)k � n�Mn�1:This fat an be proved by indution as following:Bj+1(x) �Aj+1(x) � B(T jx):(Bj(x)�Aj(x))+ (B(T jx)�A(T jx))Aj(x) �� M:j�M j�1 + �:M j = (j + 1)�M j :In partiular, for x =2 S,kBnxkkAnxk � 1 + kBnx�AnxkkAnxk � 1 + kBnx�Anxk � 1 + n�Mn�1:Choose � > 0 suh that log �1 + n�Mn�1� < " and then hoose Æ > 0 suh that�(S) < "logM . Hene we have�(B) � 1n ZX log kBnk d� = 1n ZX�S log kBnk d�+ 1n ZS log kBnk d� �� 1n ZX�S(log kAnk+ ")d�+ 1n�(S) logMn << �(A) + "+ "n + ":For any two by two real matrix B = (bij), we denotekBkmax = max fjb11j ; jb12j ; jb21j ; jb22jg :Let K > 1 be suh that K�1 kBk � kBkmax � K kBk for every B. As always, k�kdenotes the usual operator norm, indued by the eulidean norm in R2 .Lemma 2. If �(A) > 0 then there exists a measurable onjugay C : X ! SL(2;R)satisfying limn!�1 1jnj log kC(Tnx)k = 0 (we all that suh a C tempered) suh that thematrix D(x) = C(Tx)�1A(x)C(x) is diagonal. Moreover, if the angle between EuAand EsA is bounded from zero, then C an be hosen in L1M .4



Proof. Let wu(x) 2 Eu(x); ws(x) 2 Es(x) be unitary vetors suh that fwu(x); ws(x)gis a positive basis of R2 . Let eC(x) : R2 ! R2 be suh that eC(x):(1; 0) = wu(x) andeC(x):(0; 1) = ws(x). Hene eC(x) has positive determinant, C(x) = �det eC(x)��1=2 eC(x)has determinant 1 and C(Tx)�1A(x)C(x) is a diagonal matrix. In order to estimatekC(x)k, we an suppose wu(x) = (1; 0). Hene, if 0 < � < � denotes the anglebetween wu(x) and ws(x), we haveeC = � 1 os �0 sen � � and C = � sen�1=2 � os � sen�1=2 �0 sen1=2 � � :Thus kCk � K kCkmax = K sen�1=2 �. Oselede theorem informs that�1n log sin �(Tnx)! 0and the proof is �nished.Lemma 3. If T is an aperiodi invertible transformation, U is a measurable setwith �(U) > 0 and n � 1, then there exists V � U with �(V ) > 0 and suh thatV; TV; :::; Tn�1V are disjoint sets.Proof. It follows from Rokhlin-Kakutani lemma.3. The main lemma (lemma 5)De�nition 2. A measurable set Z � X is alled a oboundary if there exists ameasurable set W � X suh that Z =W�TW . (� denotes symmetri di�erene, =means di�ering by a measure zero set).Lemma 4. Given a set F � X with positive measure, there exists a set Z � F withpositive measure whih is not a oboundary.Proof. See [K℄.Remark. Here the assumption that X is a Lebesgue spae is needed.The following lemma, whih is essentially due to Knill[K℄, will be the basi tool inthe proof of theorem 2.1.Lemma 5. Suppose T is ergodi. Let Z � X be a positive measure set whih is nota oboundary. Suppose that n � 1 is suh that Z; TZ; :::; Tn�1Z are disjoint. Takeoyles A 2 L1M with �(A) > 0 and J 2 L1M equal to I in the omplementary ofZ[TZ[� � �[Tn�1Z. Suppose that (AJ)n(x):EsA(x) = EuA(x) and (AJ)n(x):EuA(x) =EsA(x) 8x 2 Z. Then �(AJ) = 0.Proof. We analyze two ases separately. 5



3.1. First ase: n = 1First we need to make some general onsiderations. One an de�ne the skew-produtT �A : X � P1  -as (T �A)(x; v) = (T (x); A(x):v):If �(A) > 0 then there are two measures �u and �s that are invariant for T �A, givenby �u;s(B) = � fx 2 X ; (x;Eu;s(x)) 2 BgIf � : X � P1 ! X denotes the obvious projetion then ��(�u) = ��(�s) = � and wesay that �u and �s projet on �.Claim 1. If � is ergodi and �(A) > 0 then there are only two ergodi measuresfor T �A whih projet on �, namely �u and �s.Proof. Let � be an ergodi measure for T �A whih projets on �. Let us de�nea funtion f : X � P1 ! R by f(x; v) = log kA(x):vkkvkFor �-a.e. x 2 X and all v 2 R2 � f0g, we havelimn!1 1n n�1Xj=0 f Æ (T �A)j(x; v) = � �(A)��(A) if v =2 Es(x)if v 2 Es(x)Therefore, by Birko�'s theorem,� �(x; v) 2 X � P1; v =2 Es(x)	 = 0 or 1:By the same reasoning,� �(x; v) 2 X � P1; v =2 Eu(x)	 = 0 or 1:Thus the only possibilities are � = �s or � = �u and the laim is proved.We now return to the proof of the main lemma. The skew-produt T � AJ hasthe invariant measure b� = 12(�u + �s):Claim 2. b� is an ergodi measure for T �AJ .Proof. Assume that there exists a measurable set Q � X � P1 with 0 < b�(Q) < 1with is invariant for T �AJ . For eah x 2 X , denote Qx = fv 2 P1; (x; v) 2 Qg. Byde�nition of b� we an suppose that Qx � fEu(x); Es(x)g for every x. Sine �(Q) isT -invariant, we have Qx 6= ;. Further, the T -invariant set fx;Qx = fEu(x); Es(x)ggmust have �-measure zero. To simplify notations, let us write Qx = u or s, with theobvious meanings. Let W = fx 2 X ;Qx = ug :6



ThenW�T�1W = fx 2 X ;Qx = u; QTx = sg [ fx 2 X ;Qx = s; QTx = ug = Z:This ontradits the assumption that Z is not a oboundary.Finally, if we had �(AJ) > 0 then b� would be a measure of the type given by the�rst laim. This is learly impossible.3.2. Seond ase: n > 1We will redue this ase to the �rst one, but again some bakground informationis needed. Given a measurable set, one an de�ne the indued �rst-return system(U; TU ; �U ) as followsx 2 U ) r(x) = minfn � 1;Tnx 2 Ug and TU (x) = T r(x)x;V � U ) �U (V ) = �(V )�(U) :We an also de�ne a indued oyle AU over this system asx 2 U ) AU (x) = Ar(x)(x):Claims. The system (U; TU ; �U ) is ergodi and�(AU ) = �(AU )�(U) :Proofs. See [K℄, lemma 2.2.Returning to the proof, let U = X � (TZ [ � � � [ Tn�1Z) � ZClaim. Z is not a oboundary for (U; TU ; �U ).Proof. See [K℄, lemma 3.4.We have x 2 U ) (AJ)U (x) = � (AJ)n(x)A(x) if x 2 ZotherwiseHene the �rst ase guarantees that �((AJ)U ) = 0 and therefore �(AJ) = 0.4. Proof of theorem 1By lemma 1, 8� > 0, the set fA 2 L1M ; �(A) < �g is open. We will then prove thatthe set fA 2 L1M ; �(A) = 0g is dense in the omplementary set of hyperboli oyles.We an suppose that T is aperiodi.Take A 2 L1M non-hyperboli with �(A) > 0. Given " > 0, we will onstrut Zand J as is lemma 5 and with kJ � Ik1 < ". The wanted perturbation with zeroexponent will be AJ . Denote by Eu(x) � Es(x) the Oselede splitting assoiated toA. The proof now bifurates in two ases, depending on whether or not the angles℄(Eu(x); Es(x)) are essentially bounded from below.7



4.1. First ase: Bounded anglesBy lemma 2, we an assume that A is diagonal, with Eu(x) = e1 and Es(x) = e2,where we denote by e1; e2 the diretions assoiated to the vetors (1; 0) and (0; 1) ofR2 .The idea to exhange the diretions is: Choose a plae where the expansion isweak for some amount of time. At �rst, take J as to displae Eu = e1 but keepinge2 �xed. Now we have to \row against the tide", thus we set J to be an hyperbolimatrix expanding e2 and ontrating e1. We do this until the displaed diretion getslose to e2 and then, using a rotation, we send it to e2. Now Es = e2 was displaed,but we wait until it drifts bak near e1. Eventually, we send this diretion to e1keeping e2 �xed.Let �(x) be suh that A(x) = � �(x) 00 �(x)�1 � :We an suppose that �(x) > 0. Sine A is not hyperboli, there are integers karbitrarily large suh that the setF = nx 2 X ; Ak(x) < (1 + ")k=2ohas positive measure. Fix some k suh that (1 + ")1�k=2 < " and �(F ) > 0.Sine 1n log An(x)jEu(x) onverges to �(A) a.e. when n ! 1, onvergene inmeasure also holds. Therefore if n is large enough then��x 2 X ; 1n log An(x)jEu(x) > �(A)� "� > 1� �(F ):Hene the setF 0 = F \ �x 2 X ; 1n log An(x)jEu(x) > �(A)� "� == nx 2 X ; Ak(x) < (1 + ")k=2 and An(x)jEu(x) > en(�(A)�")ohas positive measure. By lemma 3, there is F 00 � F 0 with positive measure and suhthat F 00; TF 00; :::; TnF 00 are disjoint. Finally, take a set Z � F 00 with positive measurethat is not a oboundary.Now let's onstrut J . Let x 2 Z. De�ne J(x) = � 1 0" 1 �. DenotingD[a℄ = � a 00 a�1 � ;set J(T ix) = D[(1 + ")�1℄ for 1 � i < j(x) � k. We have(AJ)j(x) = D[(1 + ")�j(x)+1�(x):::�(T j(x)�1x)℄� 1 0" 1 � .8



We want (AJ)j(x)(x):(1; 0) to fall in the one f(x; y); jxjjyj < "g. For this we need(1 + ")�j(x)+1�(x):::�(T j(x)�1x) < ":Sine x 2 F ,(1 + ")�k+1�(x):::�(T k�1x) < (1 + ")�k+1(1 + ")k=2 = (1 + ")1�k=2 < "and therefore we an takej(x) = minfj; (1 + ")�j(x)+1�(x):::�(T j(x)�1x) < "g � k:Denote R[a℄ = � osa � sinasin a osa �and set J(T j(x)x) = R[�(x)℄, where sin�(x) < " is hosen so thatJ(T j(x)x):(AJ)j(x)(x):e1 = e2:We will also require that sin�(x) � "2 . This an be done by weakening J(T j(x)�1x),if needed.Now set J(T ix) = I for j(x) < i < m(x). We wantAm(x)�j(x)(T j(x)x):(� sin�(x); os�(x))to fall in the one f(x; y); jyjjxj < "g, that is, we want thath�(T j(x)x):::�(Tm(x)�1x)i�2 < " tan�(x):Sine �(T j(x)x):::�(Tn�1x) > en(�(A)�")(sup �)k ;if n is hosen large enough the desired m(x) will exist and will be less than n:At the end, set J(Tm(x)x) = � 1 0�(x) 1 �, where �(x) is hosen so that (AJ)m(x)(x)e2 =e1. All the J(�) matries employed have distane to I less than, say, 10".4.2. Seond ase: Unbounded anglesThe idea now is: Choose a plae where Es and Eu are lose together and then takefor J a rotation sending Eu to Es. Then Es will be displaed and (setting J = I)we wait until this displaed Es is sent lose to Eu (and muh loser to Eu than Esis). Then we take J as to send this diretion to Eu and �xing the diretion Es.Denote  (x) = ℄(Eu(x); Es(x)). We have 0 <  (x) < �: We an assume that theset F = fx 2 X ; (x) < "g has positive measure. By Oselede theorem,�1n log sin (Tnx)! 0 a.e. when n!1;9



therefore onvergene in measure also holds. The same applies to1n log An(x)jEu(x)An(x)jEs(x) ! 2�(A)Hene the measure of the setFn = (x 2 X ; �1n log sin (Tnx) > " and 1n log An(x)jEu(x)An(x)jEs(x) > 2�(A)� ")tends to zero when n!1. We �x some n satisfyinge"n �12e(2�(A)�")n � 1��1 < " and �(Fn) > 1� �(F ):(Of ourse, we an assume that " < �(A):) Thus the set F 0 = F \ Fn has pos-itive measure. By lemma 3, there exist F 00 � F 0 of positive measure suh thatF 00; TF 00; :::; Tn+1F 00 are disjoint. Eventually, we take a set Z � F 00 of positive mea-sure whih is not a oboundary.Now let's onstrut J . We an assume that Eu(x) = e1 8x 2 X . Let x 2 Z.Set J(x) = R[ (x)℄, a rotation through angle  (x). Then set J(T ix) = I para1 � i < m(x). We want the diretion Am(x)�1(x):J(x):Es(x) to get very lose to e1,atually, muh loser to e1 than Es(Tm(x)�1x) is. Moreover, we want that m(x) � n.At the end we set J(Tm(x)x) as a paraboli matrix that �xes Es(Tm(x)�1x) and sendsAm(x)�1(x):J(x):Es(x) to Eu(Tm(x)�1x). To this aim we will need the followingestimateClaim. Let 0 < � < �, � � minf�; � � �g and u; v; w 2 R2 � f0g be suh that℄(u; v) = �; ℄(v; w) = �; ℄(u;w) = � + �:Then the matrix J with det J = 1 that �xes u and sends w to a multiple of v satis�eskJ � Ik < K1 jtan �jsin2 � ;where K1 is a onstant.Proof of the laim. Replaing, if neessary, u by �u, we an suppose that � � �2 .We an also suppose thatu = (1; 0); v = (os�; sin�); w = (os(�+ �); sin(� + �)):Thus the matrix is J = � 1 b0 1 �where b = otg�� otg(�+ �) < �sin2 � < jtan �jsin2 �and the laim follows. 10



Now denote  j =  (T jx);w0 = J(x):Es(x) = (os 2 0; sin 2 0);wj = Aj(x):w0 = wuj (1; 0) + wsj (os j ; sin j);and �j = ℄(wj ; (1; 0)):We have ws0 = sin 2 0sin 0 < 2 and wu0 = ws0 os 0 � os 2 0 = �1:Also jtan �j j = ��wsj �� sin j��wuj + wsj os j�� �� (sin j) ��wuj ����wsj �� � 1!�1 == (sin j) Aj(x)jEu(x)Aj(x)jEs(x) jwu0 jjws0j � 1!�1 << (sin j) 12 Aj(x)jEu(x)Aj(x)jEs(x) � 1!�1 :For j = n we havejtan �njsin2  n � (sin n)�1 12 An(x)jEu(x)An(x)jEs(x) � 1!�1 << e"n � 12e(2�(A)�")n � 1��1 < ":This guarantees that if we setm(x) = min�j; jtan �j jsin2  j < "�then m(x) � n and we an �nd the wanted paraboli matrix J(Tm(x)x) withJ(Tm(x))� I < K1":
11



5. Proof of theorem 2By lemma 1, the set E� = fA 2 CM ; �(A) < �gis open 8� > 0. It remains to show that it is dense. Take A 2 CM and " > 0. Bytheorem 2.1, there is eA 2 L1M near A with �( eA) = 0. Write eA = A:(I + J) withJ 2 L1(X;M(2;R)); kJk1 < ":By Lusin's theorem (see [R1℄, for instane), there is J 0 2 C(X;M(2;R)) with �[J 0 6=J ℄ < Æ (Æ will be spei�ed later) andsupx kJ 0(x)kmax � supx kJ(x)kmax(hene kJ 0k1 �onstant.kJk1). Replaing J 0 byJ 0 + Ipdet(J 0 + I) � Iwe an assume that det(J 0 + I) = 1. Let B = A:(I + J 0). ThuskB � Ak1 = kJ 0k1 � onstant:"and Z B � eA d� � kAk1 Z J � J 0 d� < onstant. kAk1 "Æ:For Æ suitably hosen, this implies �(B) < �.Remark. I believe that this theorem an be extended to the ontinuous bundlease, but I did not hek the details.6. Appendix. Existene of disontinuity pointsIt is easy to onstrut non-hyperboli oyles with positive exponent if the system isnot uniquely ergodi, for one an even hoose matries that ommute. This is learlyimpossible in the uniquely ergodi ase.Proposition 1. If (X;T; �) is ergodi but not uniquely ergodi then the funtion� : CM ! R is disontinuous.Proof. Assume, without loss of generality, that the support of � is X . Take anotherinvariant measure �. Take a ontinuous funtion f : X ! R suh that R fd� 6= 0 butR fd� = 0. De�ne the oyleA(x) = � ef(x) 00 e�f(x) � :12
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