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4.4 Bousch’s bilateral Mañé lemma . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Generic Rotation Sets 25
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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Chapter 1

Introduction

Let (X,T ) be a topological dynamical system, that is, a compact metric space X to-

gether with a continuous map T : X → X . We denote byMT be the set of T -invariant

probability measures. Let f : X → R be a continuous function, called a performance

function. We denote the n-th Birkhoff sum of f by:

f (n) = f + f ◦ T + ...+ f ◦ Tn−1.

The main purpose in Ergodic Optimization [Je2, Je4, B] is to understand the largest (or the

least) value of Birkhoff averages of a performance function. More formally, the study

of the quantity:

β(f) = sup
x∈Rf

lim
n→∞

f (n)(x)

n
, (1.1)

where Rf is the set of points x ∈ X such that limn→∞
f (n)(x)
n exists, which has full

measure for every measure µ ∈MT . The quantity (1.1) can be interpreted as the largest

average value of f along all the orbits of the dynamical system, that is:

β(f) = sup
µ∈MT

∫
f dµ. (1.2)

Therefore, we are searching for the largest average of f with respect all the ways of

measuring the space, but keeping the dynamics of the space invariant. The quantity

β(f) is also called the ergodic supremum. A measure µ ∈MT for which the supremum in

(1.2) is attained is called a f -maximizing measure. Similarly, we define α(f) = −β(−f)

to be the ergodic infimum, and analogously define f -minimizing measures. The main

problem of ergodic optimization is to find a good description of maximizing measures,

see the surveys [B, Je4] for full discussion.
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A multidimensional generalization of this problem can be given as follows: fix an inte-

ger d ≥ 1 and a continuous vector valued function F : X → Rd, we define its rotation

set as:

R(F ) =

{∫
F dµ : µ ∈MT

}
,

which is a non-empty compact and convex subset of Rd. Note that in particular if d = 1,

thenR(F ) = [α(F ), β(F )]. This generalization is called Vectorial Ergodic Optimization [B,

section 2]. Now, we are ready to state the main result of this thesis:

Theorem 1.1. Let T : X → X be a non-uniquely ergodic topological dynamical system with

dense set of periodic measures. Then the map

R : (C(X,Rd), ‖·‖∞)→ (CB(Rd), dH)

that associates to each potential F its rotation set R(F ) is continuous, open, and surjective.

Here, C(X,Rd) is endowed with the uniform norm, and CB(Rd) is the set of convex

bodies of Rd endowed with the Hausdorff distance. As a consequence of our main

result, we have:

Corolary 1.2. Let T : X → X be a non-uniquely ergodic topological dynamical system

with dense set of periodic measures. Then there exists a residual subset R of C(X,Rd)
such that R(F ) is strictly convex and has C1 boundary for all F ∈ R.

The purpose of this thesis is to expose and prove some remarkable results in Ergodic

Optimization and to show newer results about the geometry of Rotation Sets.

Organization of the Thesis: The rest of this thesis is organized as follows. In Chapter 2 we

prove the equivalence between optimizing Birkhoff averages and integral with respect

T -invariant probability measures. Also, we prove the generic uniqueness of maximiz-

ing measures. In Chapter 3 we prove a result due to Jenkinson in the inverse direction

of Ergodic Optimization, that is, given a ergodic measure, see if it is uniquely max-

imizing for some continuous performance potential. In Chapter 4 Manñé Lemma in

the expanding case following a proof given by Jenkinson. Also, we prove the bilateral

version proved by Bousch. In Chapter 5 we prove the main result of the thesis in the

context of Rotation Sets.



Chapter 2

Generic Uniqueness of Maximizing

Measures

Let (X,T ) be a topological dynamical system. Recall that given a continuous function

f : X → R we are interesed in the quantity

β(f) = sup
x∈Rf

lim
n→∞

1

n
f (n)(x), (2.1)

where Rf is the set of points for which limn→∞
1
nf

(n)(x) exists. This quantity can be

interpreted into an ergodic quantity, which is stated as follows:

Proposition 2.1. Let f : X → R be a continuous function. Then:

β(f) = sup
x∈Rf

lim
n→∞

1

n
f (n)(x) = sup

x∈X
lim
n→∞

1

n
f (n)(x) = lim

n→∞
sup
x∈X

1

n
f (n)(x) = sup

µ∈MT

∫
f dµ.

(2.2)

Recall that a f -maximizing measure is a measure for which the supremum in (2.2) is

attained. We denote byMmax
T (f) the set of f -maximizing measures. Note thatMmax

T (f)

is non-empty: if we take a sequence (µn)n∈N such that
∫
f dµn → supµ∈MT

∫
f dµ, by

weak-∗ compactness there exists a subsequence (µnk)k∈N which weak ∗ converges to a

measure µmax ∈MT . Then∫
f dµmax = lim

k→∞

∫
f dµnk = sup

µ∈MT

∫
f dµ. (2.3)

Therefore the supremum in (2.2) is always attained by some measure inMT . Moreover,

using the Ergodic Decomposition Theorem in a measure inMmax
T (f), we can ensure the

existence of ergodic f -maximizing measures.

3



4

Proof of Proposition 2.1. Let µmax be an ergodic f -maximizing measure. By the Birkhoff

Ergodic Theorem there exists x ∈ X such that:

lim
n→∞

1

n
f (n)(x) =

∫
f dµmax = sup

µ∈MT

∫
f dµ.

Therefore supµ∈MT

∫
f dµ ≤ β(f). Next, note that:

β(f) = sup
x∈Rf

lim
n→∞

1

n
f (n)(x) ≤ sup

x∈X
lim
n→∞

1

n
f (n)(x) ≤ lim

n→∞
sup
x∈X

1

n
f (n)(x).

Thus it suffices to prove the inequality

lim
n→∞

sup
n∈N

1

n
f (n)(x) ≤ sup

µ∈MT

∫
f dµ.

Assuming the contrary, there exists a sequence (xnk)k∈N such that:

lim
k→∞

1

nk
f (nk)(xnk) > sup

µ∈MT

∫
f dµ.

Now, define the sequences of probability measures:

µk =
δxnk + δT (xnk ) + ...+ δTnk−1(xnk )

nk
.

Passing to a subsequence, we may assume that µk converges to a probability measure

ν, which belongs toMT . Therefore∫
f dν = lim

k→∞

∫
f dµk = lim

k→∞

1

nk
f (nk)(xnk) > sup

µ∈MT

∫
f dµ,

which is a contradiction. �

As we said in the introduction, the main problem is to obtain a good description of

f -maximizing measures for f ∈ C(X). It is natural to ask about the uniqueness of

maximizing measures. We are going to prove the following classic fact, which states

the generic uniqueness of maximizing measures:

Theorem 2.2. ([Je2, Theorem 2.4]) Let V be a topological vector space densely and continuously

embedded in C(X). Then, the set

{f ∈ V :Mmax(f) is a singleton}, (2.4)

is a residual subset of V .
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Therefore, generic potentials in a space which is nicely embedded in C(X) have a

unique maximizing measure. The word generic is used to speak in a general topological

sense, however, this result also holds in a probabilistic sense, which is called prevalent:

for a complete proof and discussion see [Mo]. Furthermore, Contreras considered the

case where T is a hyperbolic dynamic and f belong to a class of regular potentials, and

he proved that the maximizing measures are generically supported on periodic orbits

[Co]. Moreover, Huang, Lian, Ma, Xu and Zhang proved the same result but with a

different proof. For, for specific formulation and proof see [H+].

To prove Theorem 2.2 we follow [Je2, Mo]. The main idea is to prove that the set (2.4) is

a countable intersection of continuity points of upper semi-continuous functions. For

this purpose, we need the following lemma:

Lemma 2.3. Let g ∈ V . Then, the map Lg : V → R≥0 defined by:

Lg(f) = diam
{∫

g dµ : µ ∈Mmax
T (f)

}
,

is upper semi-continuous.

Proof. Assume by contradiction that there exists ε > 0 and a sequence of functions

(fn)n∈N converging to a function f ∈ V such that:

lim
n→∞

Lg(fn) ≥ Lg(f) + ε.

By compactness of Mmax(fn) for each n ∈ N we can write Lg(fn) as

Lg(fn) =

∫
gdµ+n −

∫
gdµ−n .

Passing to a subsequence we can suppose without loss of generality that µ±n → µ± ∈
MT , sinceMT is compact and metrizable. Note that for every n ∈ N:∫

fndµ±n ≥
∫
fndµ ∀µ ∈MT ,

and passing to the limit when n → ∞ we get that
∫
f dµ± ≥

∫
f dµ for all µ ∈ MT ,

which implies that µ± ∈Mmax
T (f). Therefore:

Lg(f) ≥
∫
gdµ+ −

∫
gdµ− = lim

n→∞

∫
gdµ+n −

∫
gdµ−n = lim

n→∞
Lg(fn) ≥ Lg(f) + ε,

which is a contradiction. We conclude that Lg is upper semi continuous for all g ∈
V . �
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We need another result which characterises the set of continuity points of Lg, which is

stated as follows:

Lemma 2.4. ([Je2, Lemma 3.4]) Let f, g ∈ V . Then Lg is continuous at f ∈ V if and only if

Lg(f) = 0.

Proof. Let f ∈ V be a continuity point of Lg. Take a sequence εn → 0 and write Lg as:

Lg(f + εng) =

∫
gdµ+n −

∫
gdµ−n ,

for each n ∈ N. Also, suppose that the sequences µ±n weak-* covnverge to µ± ∈ MT .

Doing the same thing as in the proof of Lemma 2.3, see that µ± ∈Mmax(f). Now, note

that for every µ ∈Mmax(f): ∫
f + εgdµ±n ≥

∫
f + εgdµ

0 ≥
∫
f dµ±n −

∫
f dµ

εn
≥
∫
gdµ−

∫
gdµ±, (2.5)

therefore applying the limit in (2.5) when n → ∞ we have that
∫
gdµ =

∫
gdµ± for

every µ ∈Mmax(f). Thus Lg(f) = 0.

For the opposite direction, it suffices to note that by Lemma 2.3 Lg is upper semicontin-

uous and non-negative, therefore the functions f ∈ V for which Lg = 0 are continuity

points of Lg. �

Now we are ready to prove Theorem 2.2.

Proof. Let {g1, g2, ...} be a countable dense subset of V . Note that f ∈ C(X) satisfies that

Mmax
T (f) is a singleton if and only if Lg(f) = 0 for all g ∈ V . This is also equivalent to

Lgn(f) = 0 for every n ∈ N. Therefore by Lemma 2.4 we have that

{f ∈ V :Mmax(f)is a singleton} =
⋂
n∈N
{f ∈ V : Lg is continuous at f},

which is residual since Lgn is upper semi-continuous by Lemma 2.3 for all n ∈ N. �



Chapter 3

Jenkinson’s Theorem: Every ergodic

measure is uniquely maximizing

3.1 Introduction

Let (X,T ) be a topological dynamical system. Note that if there exists an unique maxi-

mizing measure for a given potential f ∈ C(X), it has to be ergodic. Thus, it is natural

to ask a inverse question: for which ergodic measures on µ ∈MT there exists a contin-

uous potential f ∈ C(X) such that Mmax
T (f) = {µ}. This question was answered by

Jenkinson [Je3]:

Theorem 3.1. ([Je3, Theorem 1]) Let X a compact metric space together with a continuous

map T : X → X . Then for every ergodic measure µ ∈Merg
T there exists a continuous potential

f ∈ C(X) such thatMmax
T (f) = {µ}.

The aim of this chapter is to show the proof given by Jenkinson. The proof of this

theorem breaks into two steps. The first one is to use the simplex structure ofMT in

order to verify that every extreme point µ ∈ MT is exposed. The second step is to

prove a sort of Riesz Representation Theorem for affine functionals defined onMT .

3.2 MT has the structure of a simplex

LetM(X) be the space of signed borel measures, which is a topological vector space

equipped with the weak-∗ topology. Moreover, this topology is locally convex and

metrizable. Also,M(X) is a Riesz space: it is an partially ordered vector space equipped

7



8

with the order induced by the coneM+(X) of all positive Borel measures on X . In ad-

dition, it is a lattice with operations:

(µ ∨ ν)(A) = sup{µ(B) + ν(A \B) : B ∈ B, B ⊂ A},

(µ ∧ ν)(A) = inf{µ(B) + ν(A \B) : B ∈ B, B ⊂ A},

that is, µ ∨ ν and µ ∧ ν are the infimum and supremum of the two elements µ and ν,

respectively. Note that µ+ = µ ∨ 0 and µ− = µ ∧ 0, where µ+ and µ− are the positive

measures given in the classical Jordan decomposition. We denote by M±T the set of

signed T -invariant measures. We are going to prove the following

Theorem 3.2. The spaceMT is a compact metrizable simplex.

Proof. For the metrizability and compactness, see [OV, Chapter 2]. In order to prove

thatMT is a simplex, note thatMT is contained in a hyperplane which does not con-

tains the origin, andMT is a basis for the cone of positive T -invariant measuresM+
T

which satisfiesM+
T −M

+
T =M±T . It suffices to prove thatM±T is a sublattice ofM(X)

with respect to the order induced by the cone M+(X) with operations ∧ and ∨. In

other words, we have to prove that if µ, ν ∈M±T then µ ∧ ν and µ ∨ ν belong toM±T . It

is not difficult to prove that for arbitrary µ, ν ∈M±T we have that:

µ+ ν = µ ∨ ν + µ ∧ ν,

µ = (µ− ν)+ + µ ∧ ν.

Therefore it is enough to prove that µ+ ∈ M±T for all µ ∈ M±T . For this purpose let

E ∈ B, thus

µ+(T−1E)− µ−(T−1E) = µ(T−1E) = µ(E) = µ+(E)− µ−(E),

which implies that µ+(E) ≤ µ+(T−1E) for all E ∈ B. Replacing E by Ec we obtain the

reverse inequality, impliying that µ+ ∈M+
T . �

The principal property that Jenkinson uses in the proof of Theorem 3.1 is that every

extreme point in a simplex is exposed, that is, there exists an affine functional defined

onMT which separates the extreme point with the rest of the space

Theorem 3.3. A point µ ∈MT is extreme if and only it is exposed.

In general every exposed point in an arbitrary convex set is extremal, but the converse

is not always true. For example, consider the case showed in Figure 3.1.
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A

K

FIGURE 3.1: A convex set K whose extreme point A is not exposed.

A key fact in the proof of Theorem 3.3 is the following

Theorem 3.4. ([E]) Let K be a simplex and let f : K → [−∞,+∞) be an upper semicontin-

uous convex function and g : K → (−∞,+∞] a lower semicontinuous concave function. If

f ≤ g, then there exists an affine functional h : K → R such that f ≤ h ≤ g.

For completeness we give the proof given in [Je3].

Proof. We prove that every extremal point is exposed. Let ν ∈MT be a extremal point.

We claim that for each measure µ ∈MT there exists an affine functional `µ :MT → R≥0
such that `µ(µ) > 0 and `µ(ν) = 0. To prove this claim, by the Hahn-Banach theorem,

for each µ ∈ MT there exists an affine functional λµ : MT → R such that λµ(ν) = 0

and λµ(µ) > 0. Define ηµ, ξµ :MT → R by:

ηµ(m) = max{0, λ(m)},

ξµ(m) =

0 if m = ν

max |λ| if m 6= ν
.

Note that ηµ ≤ ξµ and both satisfies the conditions of Theorem 3.4, thus there exists an

affine linear functional `µ :MT → R≥0 such that ηµ ≤ `µ ≤ ξµ. Moreover, we have:

`µ(µ) ≥ ηµ(µ) > 0

0 ≤ `ν ≤ χµ(ν) = 0

and thus we proved the claim.

Next, we claim that given a closed set N not containing ν, there exists an affine func-

tional `N : MT → R≥0 such that `N (ν) = 0 and `N ⊂ R>0. For this, first take for each
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µ ∈ N the open set:

Nµ = {η ∈MT : `µ(η) > 0}

Second, note that {Nµ}µ∈N forms an open cover ofN which is compact, therefore there

exists a finite sub cover {Nµi}ni=1. To prove the claim, just consider `N =
∑n

i=1 `µi .

For the last part, note thatMT \ {ν} =
⋃∞
i=1Ni, where the sets Ni are closed. Define

` =
∞∑
i=1

`Ni
ki2i

,

where ki = maxµ∈MT
|`Ni(µ)|. This ` proves that ν is exposed. �

It is a well known fact that the extremal points ofMT are exactly the ergodic measures,

but for completeness we give a proof.

Theorem 3.5. ([W, Theorem 6.10 (iii)]) A measure µ ∈MT is an extreme point ofMT if and

only if µ is ergodic.

Proof. Let µ ∈ MT be a extreme point ofMT . Suppose that µ is not ergodic, i.e., there

exists a Borel set E such that T−1(E) = E and µ(E) ∈ (0, 1). Define the conditional

probability measures µ1 6= µ2 as

µ1 = µ(B|E) and µ2(B) = µ(B|Ec).

Since E is invariant, we have that µ1, µ2 ∈MT and

µ(E)µ1 + (1− µ(E))µ2 = µ.

Therefore µ is not a extreme point inMT , a contradiction.

Suppose now that µ is ergodic and

µ = pµ1 + (1− p)µ2,

for p ∈ (0, 1) and µ1, µ2 ∈ MT . It is clear that µ1 << µ, hence by Radon-Niykodym

theorem we have:

µ1(E) =

∫
E
ρ(x)dµ(x),

for some non-negative ρ ∈ L1(µ). We claim that ρ ≡ 1 µ-almost everywhere. Let

E = {x ∈ X : ρ(x) < 1}.
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Then by the invariance of µ1:∫
E\T−1(E)

ρ(x)dµ(x) =

∫
T−1(E)\E

ρ(x)dµ(x).

If µ(E \ T−1(E)) > 0 then:

µ(T−1(E) \ (E)) ≤
∫
T−1(E)\E

ρ(x)dµ(x) =

∫
E\T−1(E)

ρ(x)dµ(x) < µ(E \ T−1(E)),

which contradicts the invariance of µ. Therefore µ(E \ T−1(E)) = µ(T−1(E) \ E) = 0,

which is equivalent to µ(E∆T−1(E)) = 0, and by ergodicity µ(E) = 0 or µ(E) = 1.

If µ(E) = 1, we have that

1 = µ1(X) =

∫
ρ(x)dµ(x) =

∫
E
ρ(x)dµ(x) < 1,

which is a contradiction. Thus µ(E) = 0 impliying that ρ ≤ 1 µ-almost everywhere.

Finally since µ1 is a probability and

1 = µ1(X) =

∫
ρ(x)dµ(x),

we have that ρ ≡ 1 µ-almost everywhere, and this implies that µ = µ1. Consequentely

µ is a extreme point ofMT . �

3.3 A representation theorem

Now that we know that each ergodic measure is exposed, the next step is to find which

form can take affine functionals ofMT . The aim of this section is to prove the following

representation theorem:

Theorem 3.6. Suppose that ` :MT → R is weak-∗ continuous and affine. Then, there exists

f ∈ C(X) such that:

`(µ) =

∫
f dµ ∀µ ∈MT .

For this we need to state some terminology. Let BT be the closure in C(X) of the

subspace genrated by the set {f − f ◦ T : f ∈ C(X)}. We denote by 〈f, µ〉 the duality

between C(X) and the space of signed Borel masures on X . We have the following

characterization of BT .

Lemma 3.7. BT = {h ∈ C(X) : 〈h, µ〉 = 0 ∀µ ∈MT }



12

Proof. We note that

{µ ∈M(X) : 〈h, µ〉 = 0 ∀h ∈ BT } =M±T .

This implies by [AB, Theorem 9.16] that the topological dual of (M±T , w∗) is C(X)/BT .

On the other hand, the topological dual of (M±T , w∗) is C(X)/Ann(M±T ). Combining

the two expressions for the topological dual of (M±T , w∗) yields the desired result. �

The duality of the pair (C(X)/BT ,M±T ) will also be denoted by 〈f +BT , µ〉, which is

clearly well defined. Now we prove Theorem 3.6.

Proof. We are going to extend ` : MT → R to an affine weak-* continuous linear func-

tional ˜̀ :M±T → R.

First Step. We extend ` : MT → R to an affine weak-* continuous linear functional

defined on the cone generated byMT . The coneM+
T of positive T -invariant measures

can be written as:

M+
T = {cµ : c ≥ 0andµ ∈MT }.

So define `1 :M+
T → R with the formula

`1(ν) = c`(µ) ∀µ ∈M+
T \ {0}, and `1(0) = 0 ,

where ν = cµ is the unique representation mentioned above. Note that `1 is additive.

We claim that `1 is weak * continuous. The continuity at any nonzero measure follows

from the continuity of `. To prove the continuity at 0 ∈M+
T , let να be a net inM+

T such

that να → 0. Write να = cαµα where µα ∈MT . Next, see that

cα = cα 〈1, µα〉 = 〈1, να〉 → 0.

In addition compactness ofMT implies that {`(να)} is bounded independentely of α.

Therefore

`1(να) = cα`(µα)→ 0.

Consequentely `1 is an affine weak * continuous functional.

Second Step. We extend `1 to a weak * continuous linear functional ˜̀ : M±T → R
defined by: ˜̀(µ) = `1(µ

+)− `1(µ−),

where µ+ and µ− where defined in the previous section. The additivity of µ+, µ− and

`1 implies that `1 is linear. The main problem is the weak-* continuity, since the Jordan
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decomposition is not always continuous.

SinceM±T is the topological dual of C(X)/BT it suffices to prove that the restriction of

` to the unit ball in (M±T , || · ||) is continuous, where || · || is the dual norm. Note that || · ||
coincides with the total variation norm of measures inM±T . The linearity of `1 implies

that ˜̀is continuous if and only if B ∩ ker ˜̀is weak *-closed.

Take {µn}n∈N ⊂ B ∩ ker ˜̀ such that µn → µ, so it suffices to prove that µ ∈ ker ˜̀. By

the compactness of B, there exists a subsequence µnk of µn such that µ+nk → ν1 and

µ−nk → ν2. This implies that

µ = v1 − v2,

and therefore

˜̀(µ) = ˜̀(ν1 − ν2)
= ˜̀(ν1)− ˜̀(ν2)
= `1(ν1)− `1(ν2)

= lim
k→∞

`1(µ
+
nk

)− `1(µ−nk)

= lim
k→∞

˜̀(µnk) = 0.

Thus µ ∈ ker(˜̀). We conclude that ˜̀is weak * continuous.

Final step. We conclude that ˜̀ is a linear weak-* continuous extension of `, and since

the topological dual of (M±T , w∗) is C(X)/BT , there exists f + BT ∈ C(X)/BT such

that: ˜̀(µ) = 〈f +B(X), µ〉 ∀µ ∈M±T .

In particular `(µ) =
∫
f dµ ∀µ ∈MT . �

3.4 Proof of the main theorem

Now we are ready to collect the results of the previous sections and prove the main

theorem of this chapter.

Proof. Let µ ∈ MT be an ergodic measure. Since µ is an extreme point, by Theorem

3.3 we have that µ is exposed, that is, there exists a weak * continuous affine functional

` :MT → R such that

`(ν) < 0 for all ν ∈MT \ {µ} and `(µ) = 0.
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By Theorem 3.6, there exists a function f ∈ C(X) such that `(ν) = 〈f, ν〉 for all ν ∈MT .

Therefore we have that:

sup
ν∈MT

∫
f dν = 0

and the supremum is attained at only ν = µ, as we wanted to prove. �



Chapter 4

Two Mañé Lemmas

4.1 Introduction

There is a useful tool for the understanding of maximizing measures, namely Mañé

Lemma [Sa, Bo1, CG, Bo2] or Revelation lemma [Je4]. For the purpose of the following

chapter, we will use the same terminology of [Je4]. We will define the concept of revealed

function:

Definition 4.1. Let f : X → R be continuous. We say that f is revealed if f−1(max f)

contains a compact forward T -invariant 1 set.

For revealed functions we have the following proposition, which helps the understand-

ing of the ergodic maximum and the optimal measures in which the ergodic supremum

is attained.

Proposition 4.2. Let f : X → R be a revealed function. Then, the following hold:

1. β(f) = max f ;

2. Mmax
T (f) = {µ ∈MT : supp(µ) ⊂ f−1(max f)}.

Proof. To prove (1), notice that for every µ ∈ MT we have
∫
fdµ ≤ max f , so taking

supremum over all those measures we get β(f) ≤ max f . Now since f is revealed,

there exists a compact T -invariant set K, so we consider the dynamic T |K : K → K.

By Krylov-Bogolyubov’s Theorem (see for example [OV, Chapter 2]), there exists µK ∈
MT |K . Now, for every Borel set A ⊂ X define ν(A) := µK(A ∩ K). Using that K is

1We say that a non-empty subset A ⊂ X is forward T -invariant if T (A) ⊂ A.

15
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T -invariant, it is not hard to show that ν ∈MT and that ν(K) = 1. Since f ≡ max f on

K,

max f = ν(K) max f =

∫
fdν ≤ β(f).

In order to prove (2), let µ ∈MT such that supp(µ) ⊂ f−1(max f). Then, by (2)∫
fdµ =

∫
f−1(max f)

fdµ = max f = β(f),

and thus µ ∈Mmax
T . Now assume that µ ∈Mmax

T , by (1) we get∫
(max f − f)︸ ︷︷ ︸

≥0

dµ = 0,

which implies that supp(µ) ⊂ {x ∈ X : f(x) = max f} = f−1(max f), and this con-

cludes the proof of (2). �

Proposition 4.2 tells us that for revealed functions, we have a characterization of the

maximizing measures. However, in general the functions are not revealed. For this

purpose, given a function we try to find revealed functions that are in some sense

equivalent to the original one.

Definition 4.3. Let f : X → R be continuos. We say that f has a weak-revelation

ψ ∈ C(X) if ψ is a weak-coboundary 2 and f + ψ is a revealed function.

A natural choice of ψ is what is called a continuous coboundary, i.e. a function of the

form ϕ− ϕ ◦ T , where ϕ ∈ C(X).

Definition 4.4. We say that a continuous coboundary ψ = ϕ− ϕ ◦ T is a revelation for

f if f + ψ is a revealed function.

Examples of such revelations can be found in [Je4]. Notice that ifψ is a weak-coboundary,

then β(f) = β(f + ψ) andMmax
T (f) = Mmax

T (f + ψ). So, by Proposition 4.2 we have

the following proposition:

Proposition 4.5. Let ψ be a weak-revelation for f . Then

1. β(f) = max(f + ψ);

2. Mmax
T (f) = {µ ∈MT : supp(µ) ⊂ (f + ψ)−1(max(f + ψ))}.

2ψ ∈ C(X) is a weak-coboundary if
∫
ψdµ = 0 ∀µ ∈MT .
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There is a lot of literature concerning the existence of such revelations (which are in par-

ticular weak-revelations) [Sa, Bo1, CG, Je4]. In this note, we will discuss the existence

of revelations for certain classes of dynamical systems. The most part of this chapter

were from a notes written jointly with Sebastian Burgos.

4.2 Expandingness

In this section we will always assume that (X,T ) is a topological dynamical system.

Definition 4.6. We say that T : X → X is distance-expanding if there exist constants

λ > 1 and η > 0 such that d(Tx, Ty) ≥ λd(x, y) whenever d(x, y) ≤ 2η.

Definition 4.7. We say that T : X → X is (topologically) transitive if for every non-

empty open sets U, V ⊂ X , there exists n ∈ N such that TnU ∩ V 6= ∅.

Remark 4.8. Notice that if T is topologically transitive, then it maps X onto X .

Definition 4.9. We say that T : X → X is expanding if the following hold:

1) T is distance-expanding,

2) T is open,

3) T is transitive.

We will see that conditions 1) and 2) over T ensures that T is locally-invertible, and

these local inverse branches are contractions. Condition 3) allows to use the specification

property ([PU, Theorem 3.3.12]), which ensures the existence of a certain shadowing

property concerning periodic orbits.

Lemma 4.10. ([PU, Lemma 3.1.2]) If T is open, then for every η > 0, there exists ξ > 0

such that

T (B(x, η)) ⊃ B(Tx, ξ)

for every x ∈ X .

Proof. For every x ∈ X , define

ξ(x) := sup{r > 0 : T (B(x, η)) ⊃ B(Tx, r)}.

Since T is open, ξ(x) > 0. Since T (B(x, η)) ⊃ B(Tx, ξ(x)), it is enough to show that

ξ := inf{ξ(x) : x ∈ X} > 0. Assume by contradiction that ξ = 0, so there exists
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{xn}n ⊂ X such that ξ(xn) → 0 as n → ∞. Since X is compact, we can assume that

xn → y ∈ X , and therefore

B(xn, η) ⊃ B(y, η/2)

for n large enough.

By the openness of T , there exists ε > 0 such that for every n large enough

T (B(xn, η)) ⊃ T (B(y, η/2)) ⊃ B(Ty, ε) ⊃ B(Txn, ε/2).

Then, ξ(xn) ≥ ε/2 for n large enough, which is a contradiction. �

If T is distance-expanding, it follows from the definition that for every x ∈ X , the map

T |B(x,η) is injective and therefore it has an inverse map on T (B(x, η)). If additionally

T is open, by Lemma 4.10 the domain of the inverse map around Tx contains the ball

B(Tx, ξ).

Definition 4.11. Assume that T is distance-expanding and open, and let x ∈ X . We

denote by T−1x : B(Tx, ξ)→ B(x, η) the inverse map of T |B(x,η) restricted to B(Tx, ξ).

Lemma 4.12. [PU, Lemma 3.1.4] For x ∈ X and y, z ∈ B(Tx, ξ), we have

d(T−1x (y), T−1x (z)) ≤ λ−1d(y, z).

In particular T−1x (B(Tx, ξ)) ⊂ B(x, λ−1ξ) ⊂ B(x, ξ) and T (B(x, λ−1ξ)) ⊃ B(Tx, ξ) for

ξ > 0 small enough (what specifies the Lemma 4.10).

Remark 4.13. For every x ∈ X , n ∈ N and 0 ≤ j ≤ n − 1 write xj := T jx. By Lemma

4.12 the composition

T−1x ◦ T−1x1 ◦ · · · ◦ T
−1
xn−1

: B(Tnx, ξ)→ X

is well defined.

x x1
· · ·

xn−1 Tnx

ξ

T−1x T−1x1

T−1xn−2
T−1xn−1

Theorem 4.14. ([PU, Theorem 3.3.12]) Let T : X → X be a continuous mapping. Assume

that T is expanding, then the following specification property holds: For every β > 0, there

exists a positive integer N such that for every n ≥ 0 and every T-orbit (x0, ..., xn) there exists
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a periodic point y of period not large than n+N whose orbit for the times 0, ... , n β-shadows

(x0, ..., xn). Moreover, if we denote by Per(y) the minimal period of y, then there exists k ∈ N
such that n ≤ k · Per(y) ≤ n+N .

4.3 Mañé lemma for expanding maps

In this section, we follow Jenkinson ([Je4, Theorem 6.2]), in which he proves the exis-

tence of revelations for expansive maps and ’regular’ functions. The argument is based

the proof of the Manñé Lemma due to Contreras, Lopes and Thieullen [CoLT] for C1-

expanding maps of the circle.

Theorem 4.15. ([Je4, Theorem 6.2]) Let T : X → X be an expanding map. Then every

f ∈ Lip(X) has a revelation ψ = ϕ− ϕ ◦ T , with ϕ ∈ Lip(X).

Proof. First, we prove the following characterization of being a revelation for f :

Lemma 4.16. A continuous coboundary ψ is a revelation for f if and only if f + ψ ≤
β(f).

Proof. First suppose that ψ is a revelation for f . Then, since f+ψ is a revealed function,

f + ψ ≤ max(f + ψ) = β(f + ψ) = β(f).

Conversely, assume that f +ψ ≤ β(f) and let µ ∈Mmax
T (f) =Mmax

T (f +ψ) (since ψ is

a coboundary). Then
∫

(f + ψ)dµ = β(f + ψ) = β(f) and thus∫
(β(f)− (f + ψ))︸ ︷︷ ︸

≥0

dµ = 0.

This implies that

supp(µ) ⊂ {x ∈ X : (f + ψ)(x) = β(f)}. (4.1)

This last set is non-empty, since µ is a probability measure, and hence max(f + ψ) =

β(f). Notice that (4.1) can be written as supp(µ) ⊂ (f + ψ)−1(max(f + ψ)).

We claim that supp(µ) is a compact T -invariant set. The compactness is clear, since it is a

closed set on a compact metric space. In order to prove that supp(µ) is T -invariant, take
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x ∈ supp(µ) and ε > 0. It is enough to prove that µ(B(Tx, ε)) > 0. By the continuity of

T , there exists δ > 0 such that T (B(x, δ)) ⊂ B(Tx, ε). Then, since µ is T -invariant

0 < µ(B(x, δ)) ≤ µ(T−1B(Tx, ε)) = µ(B(Tx, ε)).

Hence, f + ψ is revealed and the proof of Lemma 4.16 is finished. �

Now denote by Snf :=
∑n−1

j=0 f ◦ T j the nth Birkhoff sum of f . For x ∈ X define

ϕ(x) := sup
n≥1

sup
y∈T−nx

(Snf(y)− nβ(f)). (4.2)

Remark 4.17. Since T is transitive, it is surjective so the set T−nx is non-empty for

every x ∈ X and n ≥ 1. To prove that ϕ is well defined, it only remains to show that

ϕ(x) < ∞ for every x ∈ X . Also notice that we can assume without loss of generality

that β(f) = 0 (otherwise set f̃ := f − β(f)).

Lemma 4.18. For every x ∈ X , ϕ(x) <∞.

Proof. Let x ∈ X , and consider N ∈ N given by the specification property (see Theorem

4.14, using β = ξ of the Lemma 4.10). For n ≥ N , take y ∈ T−nx. Then, there exists

a periodic point p ∈ X with n − N ≤ per(p) ≤ n (set k := per(p), and notice that it is

not necessarily the minimal period of p) such that d(T jy, T jp) ≤ ξ for 0 ≤ j ≤ n − N .

Therefore, since T is expanding we have

|Snf(y)− Skf(p)| ≤

∣∣∣∣∣∣
n−N∑
j=0

(f(T jy)− f(T jp))

∣∣∣∣∣∣+

∣∣∣∣∣∣
k−1∑

j=n−N+1

(f(T jy)− f(T jp))

∣∣∣∣∣∣+

∣∣∣∣∣∣
n−1∑
j=k

f(T jy)

∣∣∣∣∣∣
≤ Lip(f)

n−N∑
j=0

d(T jy, T jp) + 2 ‖f‖∞ (k − n︸ ︷︷ ︸
≤0

+N) + (n− k︸ ︷︷ ︸
≤N

) ‖f‖∞

≤ Lip(f)d(Tn−Ny, Tn−Np)

n−N∑
j=0

λ−(n−N−j) + 3N ‖f‖∞

≤ Lip(f) diamX

1− λ−1
+ 3N ‖f‖∞ =: C

Thus

Snf(y) ≤ C + Skf(p) ≤ C,

since
1

k
Skf(p) =

∫
fd

1

k

k−1∑
j=0

δT jp


︸ ︷︷ ︸

∈MT

≤ β(f) = 0.
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Now taking supremum over y ∈ T−nx and then over n ≥ N we get ϕ(x) <∞. �

To prove that ϕ− ϕ ◦ T is a revelation for f , let x ∈ X . Since T−(n−1)(x) ⊂ T−n(Tx),

ϕ(Tx) = sup
n≥1

sup
y∈T−n(Tx)

Snf(y) ≥ sup
n≥1

sup
y∈T−(n−1)(x)

Snf(y). (4.3)

Now if y ∈ T−(n−1)(x), then Snf(y) = f(x) + Sn−1f(y) for every n ≥ 1 (with S0f ≡ 0).

So by (4.3)

ϕ(Tx) ≥ f(x) + sup
n≥1

sup
y∈T−(n−1)(x)

Sn−1f(y).

However,

sup
n≥1

sup
y∈T−(n−1)(x)

Sn−1f(y) = sup
N≥0

sup
T−N (x)

SNf(y) ≥ sup
N≥1

sup
T−N (x)

SNf(y) = ϕ(x),

which implies that f(x) + ϕ(x)− ϕ(Tx) ≤ 0 = β(f). By Lemma 4.16 we conclude that

ϕ− ϕ ◦ T is a revelation for f .

Now, to prove that ϕ is Lipschitz we will need the following Lemma:

Lemma 4.19. Let g : X → R be a function. If there exist constants C, ε > 0 such that for

every x ∈ X , g|B(x,ε) is Lipschitz with Lip(g|B(x,ε)) ≤ C, then g ∈ Lip(X).

Proof. First, there exists M > 0 such that |g| ≤ M . So given x, y ∈ X two different

points, we have two cases: if d(x, y) < ε, then

|g(x)− g(y)|
d(x, y)

≤ C.

Otherwise, if d(x, y) ≥ ε, then

|g(x)− g(y)|
d(x, y)

≤ 2M

ε
.

Therefore, g is Lipschitz. �

Now we will prove that ϕ defined in (4.2) is Lipschitz.

Let B be a ball of radius ξ. Let x, x′ ∈ B and ε. By definition of ϕ, there exist N ≥ 1 and

y ∈ T−N (x) such that

ϕ(x) ≤ ε+ SNf(y). (4.4)
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Since T is expanding, by Remark 4.13 we can write y = T−1i1
◦ · · · ◦ T−1iN

(x), where T−1ij

denote inverse branches of T (recall that we are in a ball of radius ξ). Define

y′ := T−1i1
◦ · · · ◦ T−1iN

(x′).

In particular y′ ∈ T−N (x′), so SNf(y′) ≤ supz∈T−N (x′) SNf(z) and therefore

SNf(y′) ≤ sup
n≥1

sup
z∈T−n(x′)

SNf(z) = ϕ(x′). (4.5)

Thus, combining (4.4) and (4.5) we have ϕ(x)−ϕ(x′) ≤ SNf(y)−SNf(y′)+ε. However,

SNf(y)− SNf(y′) =
N−1∑
j=0

(f(T jy)− f(T jy′)) ≤ Lip(f)
N−1∑
j=0

d(T jy, T jy′)

≤ Lip(f)

N−1∑
j=0

λ−(N−j)d(x, x′) ≤ Lip(f)

1− λ−1
d(x, x′).

Since ε was arbitrary we proved that

ϕ(x)− ϕ(x′) ≤ Lip(f)

1− λ−1
d(x, x′).

So ϕ|B is Lipschitz with Lip(ϕ|B) ≤ Lip(f)

1− λ−1
for every ball B of radius ξ. By Lemma

4.19 we conclude that ϕ ∈ Lip(X) and the proof of Theorem 4.15 is finished. �

4.4 Bousch’s bilateral Mañé lemma

Let (X,T ) be a topological dynamical system and let f : X → R be a continuous

function which has a revelation cohomologous to f , that is, there exists a continuous

function ϕ : X → R such that:

f + ϕ− ϕ ◦ T ≤ β(f). (4.6)

Suppose that−f also has a revelation which is cohomologous to−f , that is, there exists

a continuous function ψ : X → R such that:

f + ψ − ψ ◦ T ≥ α(f), (4.7)



23

where α(f) is the ergodic infimum of f . In this section, we prove a Bousch’s theorem

which states that we can take a common revelation satisfying both inequalities (4.6)

and (4.7).

Theorem 4.20. ([Bo2, Theorem 1]) Let T : X → X be a continuous map in a compact metric

space and f : X → R a continuous function. Suppose that there exists two functions ϕ,ψ :

X → R satisfying (4.6) and (4.7). Then, if α(f) < β(f), there exists a continuous function

ρ : X → R such that:

α(f) ≤ f + ρ− ρ ◦ T ≤ β(f). (4.8)

If α(f) = β(f) and T is transitive, then there exists ρ : X → R satisfying (4.8). In other

words, if f has cohomologous revelations on both sides, then there exists a bilateral revelation.

Proof. We divide the proof into two cases. Suppose that α(f) = β(f). Define

g = f + ψ − ψ ◦ T − α(f) and φ = ϕ− ψ.

Thus g ≥ 0 and g + φ− φ ◦ T ≤ 0. Combining these two inequalities we have that

φ ◦ T ≥ φ+ g ≥ φ.

Therefore φ◦T ≥ φ. The transitivity of T implies that φ is constant, which is equivalent

to the fact that f is co-homologous to β(f), and we are done in this case taking ρ = ϕ.

Suppose that α(f) < β(f). Withouth any loss of generality suppose that there exists

C > 0 such that 0 ≤ ψ − φ ≤ C. Define the revealed functions

φα = f + ψ − ψ ◦ T and φβ = f + ϕ− ϕ ◦ T .

Also, define a continuous function h : X → R by

h = νφβ + (1− ν)φα,

for a certain continuous function ν : X → R that we are going to take later. We claim

that we can choose ν such that a very large Birkhoff average of h is revealed by both

sides, that is, there exists n ∈ N satisfying that

α(f) ≤ h(n)

n
≤ β(f).

For this purpose, fix n ∈ N and we calculate the Birkhoff sum of h:

h(n) = f (n) + (1− ν)ψ − (1− ν)ψ ◦ Tn+1 + νϕ− νϕ ◦ Tn+1.
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From the above equality, we have that

h(n) ≥ φ(n)α + ν(ϕ− ψ), (4.9)

and

h(n) ≤ φ(n)β + (1− ν)(ψ − ϕ). (4.10)

Note that if ν = 0 in 4.9 implies that h(n) ≥ α(f) ·n, and also if ν = 1 in 4.10 implies that

h(n) ≤ β(f) · n. Therefore we need to take a very appropriate ν in order to have both

inequalities valid in the whole space X . For this purpose, it is convenient to define the

compact sets:

Kn =
{
x ∈ X : (φ

(n)
α + ν(φ− ψ))(x) < α(f) · n

}
,

Ln =
{
x ∈ X : (ϕ

(n)
β + (1− ν)(ψ − ϕ))(x) > β(f) · n

}
.

It is not difficult to see that for large n we have that Kn ∩ Ln = ∅. Take such n and a

continuous ν : X → [0, 1] such that ν|Kn = 0 and ν|Ln = 1. Therefore

∀x ∈ X =⇒ α(f) · n ≤ h(n)(x) ≤ β(f) · n,

which is what we claimed.

Since h is cohomologous to both f and
h(n)

n
, there exists a continuous ρ : X → R such

that:

α(f) ≤ f + ρ− ρ ◦ T ≤ β(f). �



Chapter 5

Generic Rotation Sets

5.1 Introduction

Let (X,T ) be a topological dynamical system. Given a continuous vector valued po-

tential F : X → Rd, we define its rotation set as:

R(F ) =

{∫
F dµ : µ ∈MT

}
.

This is a convex body in Rd, that is, a non-empty compact and convex subset of Rd.

This definition originates from the rotation theory on the torus [MK]: if f : Td →
Td is continuous, homotopic to the identity with lift f̃ : Rd → Rd, we consider the

displacement function F (x) := f̃(x) − x. The corresponding rotation set R(F ) yields

important information about the dynamics of f . Note that in the one-dimensional case,

R(F ) = {ρ(f̃)}, where ρ(·) is the Poincaré rotation number. For d ≥ 2, it is known that

generically the rotation set is given by a rational polygon [P], and there are rotation sets

with smooth boundary points [BCH].

Returning to the general context, Ziemian [Zi] studied the situation where the dynam-

ics is a subshift of finite type (SFT) and the potential F is locally constant, and proved

that in this case the rotation set is a polytope. On the other hand, Kucherenko and Wolf

[KW] proved that if T is a SFT then every convex body of Rd appears as a rotation set

of a continuous potential.

Ergodic optimization is another motivation for the study of the rotation set. Recall that

in the one-dimensional case, the rotation set is R(f) = [α(f), β(f)].

Consider the more general problem of computing the maximum ergodic average β(f)

for all functions f in a given finite-dimensional subspace of C(X), say with generators

25
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f1, ..., fd. If f =
∑d

j=1 αjfj then we have:

β(f) = sup
~x∈R(F )

(α1, ..., αd) · ~x

where F = (f1, f2, ..., fd). Therefore, the problem reduces to the study of the rotation

set of F , which is called Vectorial Ergodic Optimization [B, section 2].

Let us describe one of the first examples of rotation sets, introduced by Jenkinson [Je1].

Let X = R/Z be the circle, T be the doubling map, and F (x) = (cos(2πx), sin(2πx)) be

the potential. The corresponding rotation set R(F ) is called the fish. Validating exper-

imental results of Jenkinson, Bousch [Bo1] proved that the fish is strictly convex and

every point on its boundary is the integral of F with respect to a unique T -invariant

probability measure. Furthermore, he proved that the fish has a dense subset of corners

(points of non-differentiability), and each corner is the integral of F with respect to a

unique T -invariant porbability measure, which is periodic, that is, supported on a single

periodic orbit.

It is natural to ask whether these characteristics of the fish are typical among rotation

sets: see [B, section 2] for further discussion. In this work, we give a partial answer to

this question. Under a mild hypothesis on the dynamics T (which is satisfied for the

doubling map and SFT), we prove that for generic continuous potentials, the rotation

set is strictly convex and (unlike the fish) has a C1 boundary. This genericity result is

obtained as a corollary of our main theorem, which reads as follows:

Theorem 5.1. Let T : X → X be a non-uniquely ergodic topological dynamical system with

dense set of periodic measures. Then the map

R : (C(X,Rd), ‖·‖∞)→ (CB(Rd), dH)

that associates to each potential F its rotation set R(F ) is continuous, open, and surjective.

Here, C(X,Rd) is endowed with the uniform norm, and CB(Rd) is the set of convex

bodies of Rd endowed with the Hausdorff distance (see section 5.2 for more details).

Continuity of the map R is trivial. Surjectivity of R was already known when T is a

SFT: see [KW, Theorem 2].

The hypothesis of denseness of periodic measures holds for any dynamical system

with the specification property (e.g., uniformly expanding transformations, SFT, and

Anosov diffeomorphisms). It also holds for many classes of non-hyperbolic dynamics,

for example, β shifts, S-gap shifts, and isolated non-trivial transitive sets of C1-generic

diffeomorphisms: see [GK].



27

As a consequence of our main result, we have:

Corolary 5.2. Let T : X → X be a non-uniquely ergodic topological dynamical system

with dense set of periodic measures. Then there exists a residual subset R of C(X,Rd)
such that R(F ) is strictly convex and has C1 boundary for all F ∈ R.

Proof of Corollary 5.2. The set of convex bodies which are strictly convex withC1 bound-

ary is residual [S, p. 133]. Therefore the pre-image under R of this set is also residual,

since R is continuous and open by Theorem 5.1. �

The C1 regularity in the corollary cannot be improved in this case: for generic convex

bodies the boundary is not C1+α, for any α > 0 : see [KliN].

It is natural to ask whether Theorem 5.1 holds for spaces of more regular functions, for

example, Lipschitz functions. The answer is negative: see section 5.5.2.

5.2 Preliminaries

Let A ⊂ Rd and ε > 0. We define ε-neighbourhood of A as

Bε(A) = {x ∈ Rd : inf
y∈A
‖x− y‖ < ε}.

We say that a non-empty subsetK ⊂ Rd is a convex body if it is compact and convex. We

denote the set of convex bodies by CB(Rd), and by CB◦(Rd) the set of convex bodies

with non-empty interior. Aditionally, given a convex body K, we denote by int(K) its

interior and relint(K) its relative interior. We endow CB(Rd) with a structure of metric

space, given by the Hausdorff distance defined by:

dH(K,L) = max

{
sup
x∈K

inf
y∈L
‖x− y‖ , sup

y∈L
inf
x∈K
‖x− y‖

}
.

This definition only requires K,L to be compact. Also, the sup and inf can be replaced

by max and min due to compactness. This metric turns CB(Rd) into a complete, locally

compact metric space [S, p. 62]. The Hausdorff distance between two convex bodies

can also be obtained just considering their boundaries, namely, if K,L are two convex

bodies, then dH(K,L) = dH(∂K, ∂L) [S, p. 61]. A useful lemma that will be used later

is the following:

Lemma 5.3. Let K ∈ CB(Rd) and 0 < δ < 1. Then there exists Kδ ∈ CB(Rd) such that

Kδ ⊂ relint(K) and dH(Kδ,K) < δ.
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Proof. Define the support function of an arbitrary L ∈ CB(Rd) by

hL(u) = sup
x∈L

x · u,

and denote hL = hL|Sn−1 . Applying a translation if necessary, suppose that 0 ∈ relint(K).

Define Kδ =
(
1− δ

kd

)
K, where d = supx∈∂K ‖x‖ and k ∈ N is such that δ

kd < 1. It is

clear that Kδ ⊂ relint(K), and using [S, Lemma 1.8.14] :

dH(Kδ,K) =
∥∥hKδ − hK∥∥∞

≤ δ

kd

∥∥hK∥∥∞
=

δ

kd
sup
x∈∂K

‖x‖ < δ. �

LetX be a compact metric space and let T : X → X be a continuous map. Given x ∈ X ,

we denote by O(x) = {T j(x) : j ≥ 0} its positive orbit. For a periodic point x ∈ X , we

denote by µO(x) the unique T -invariant probability measure supported in O(x). These

measures are called periodic, andMper
T denotes the set of periodic measures.

Letting F : X → Rd be a continuous potential, we use the following notation for

Birkhoff sums:

F (n) := F + F ◦ T + ...+ F ◦ Tn−1.

Recall that the rotation set of F is defined as:

R(F ) =

{∫
F dµ : µ ∈MT

}
.

This is a compact convex subset of Rd. Also, define the periodic rotation set of F as:

R per(F ) =

{∫
F dµ : µ ∈Mper

T

}
.

Clearly ifMper
T is dense inMT , then Rper(F ) is dense in R(F ). Let us prove the conti-

nuity of the map R:

Proposition 5.4. The map R : (C(X,Rd), ‖‖∞)→ CB(Rd, dH) is continuous.

Proof. Let µ ∈MT and F,G ∈ C(X,Rd), and note that:∥∥∥∥∫ F dµ−
∫
Gdµ

∥∥∥∥ ≤ ‖F −G‖∞
and this immediately implies that dH(R(F ), R(G)) ≤ ‖F −G‖∞. �
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5.3 Approximate Mañé Lemma

The Mañé lemma is a useful tool in ergodic optimization [Sa, Bo1, CG, Je4, Bo2]. It is

stated as follows in the particular situation of expanding dynamics: let T : X → X

be a expanding map and α ∈ (0, 1]. Then, for any f in the space Cα(X) of α-Hölder

functions, there exists h ∈ Cα(X) such that α(f) ≤ f+h◦T−h ≤ β(f),where α(f) and

β(f) are the minimum and maximum ergodic average, respectively. This says that up

to adding a coboundary h − h ◦ T to f (which does not alter the integrals with respect

invariant measures), we can assume that the image of f is contained in the rotation set

R(f) = [α(f), β(f)].

We can ask if there is an analogous of the Mañé Lemma in the setting of vectorial po-

tentials. Following the same spirit of the Mañé Lemma, we say that a vectorial po-

tential F ∈ C(X,Rd) satisfies the Mañé Lemma if there exists H ∈ C(X,Rd) such that

Im(F +H −H ◦ T ) ⊂ R(F ). Even if we impose some regularity on F , the classical ex-

ample of the fish is a Hölder function that does not satisfy the Mañé Lemma, as noted

by Bochi and Delecroix: see [B, Proposition 2.1].

Nevertheless, we have the following approximate Mañé Lemma:

Lemma 5.5. Let F : X → Rd be a continuous function and ε > 0. Then there exists a

continuous function G : X → Rd cohomologous to F such that:

Im (G) ⊂ Bε(R(F )).

Moreover, there exists N0 ∈ N such that G can be taken to be 1
nF

(n) for arbitrary n ≥ N0.

Lemma 5.5 is well known (c.f. “enveloping property” [B, p. 6]), but for completeness

we give a proof. Note that if F : X → Rd is continuous, then F is cohomologous to
1
nF

(n) for all n ∈ N, since F = 1
nF

(n) +H −H ◦ T , where H = 1
n

∑n
j=1 F

(j).

Proof of Lemma 5.5. Suppose in order to get a contradiction that there exists a number

ε > 0 and a sequence {xn}n∈N such that:

1

n
F (n)(xn) /∈ Bε(R(F )).

Consider the following sequence of probability measures on X :

µn =
δxn + δT (xn) + ..+ δTn−1(xn)

n
.

By compactness of the space of probability measures there exists a subsequence µnk
converging to a probability measure µ. It is not hard to see that µ is a T -invariant
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probability measure. Thus, by the weak-∗ convergence, we obtain:∫
F dµnk →

∫
F dµ

and since Bε(R(F ))c is closed, we have
∫
F dµ /∈ Bε(R(F )), a contradiction. Since F is

cohomologous to its finite time averages, we can take G = 1
nF

(n) for sufficiently large

n. �

5.4 Proof of the main result

In this section we present the main technical ingredients in the proof of Theorem 5.1

and we combine them at the end. We will always assume that (X,T ) is a non-uniquely

ergodic topological dynamical system with dense set of periodic measures. The first

technical lemma enlarges the rotation sets, without losing the control of the distance to

the original potential. .

Lemma 5.6. Let F : X → Rd be a continuous function with ]R(F ) ≥ 2 and K ∈ CB◦(Rd)
such thatR(F ) ⊂ int(K). Let z1, ..., zm be distinct points inRper(F )\∂R(F ) and y1, ..., ym ∈
int(K)\R(F ) be such that R(F ) ⊂ conv{y1, ..., yn} (see Figure 5.1). Then there exists a con-

tinuous potential G : X → Rd with:

1. ‖G− F‖∞ ≤
7
6 maxi ‖zi − yi‖, and

2. conv{y1, ..., ym} ⊂ R(G) ⊂ int(K).

R(F )

K

z1
•

y1
•

z2
•

y2
•

z3
•

y3
•

z4
•

y4
•

z5
•

y5
•

z6
•

y6
•

z7
•y7

•

FIGURE 5.1: Setting for Lemma 5.6 with m = 7.

Proof. Fix ε > 0 such that Bε(R(F )) ⊂ int(K) and yj /∈ Bε(R(F )) for all j = 1, ...,m.

Thus, we can apply Lemma 5.5 with the set of points {y1, ..., ym} to obtain n ∈ N such

that:
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• Im
(
1
nF

(n)
)
⊂ Bε(R(F )) ⊂ int(K)

• For each z ∈ {z1, ..., zm} there exists a periodic point x ∈ X such that the Birkhoff

average 1
nF

(n) equals z on the orbit of x. We denote by xj the corresponding point

to zj . For this we choose n sufficiently large with nmultiple of lcm(]O(x1), ..., ]O(xm)).

The main idea is to perturb the potential F nearby the periodic orbits. For this purpose,

let us choose the index set I = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ ]O(xi)} and a collection of

open balls {B(i,j)}(i,j)∈I ⊂ X centered at the periodic points defined by:

B(i,j) = Br(T
j(xi)) ∀(i, j) ∈ I

and r > 0 sufficiently small so that the collection of balls {B(i,j)}(i,j)∈I are pairwise

disjoint, 1
nF

(n)(Bi,j) ⊂ int(R(F )) and:

diam
(

conv

{
1

n
F (n)(Bi,j) ∪ {yi}

})
≤ 7

6
‖yi − zi‖ (5.1)

Let B∗ be the complement of O(x1) ∪ ... ∪ O(xm). Take a continuous partition of unity

ρ∗ +
∑

(i,j)∈I

ρi,j = 1

subordinated to the open cover B∗ ∪
⋃

(i,j)∈I B(i,j) = X . Next, we define a function

G̃ : X → Rd as:

G̃(x) =
∑

(i,j)∈I

ρi.j(x)yi + ρ∗(x)
1

n
F (n)(x).

We claim that G̃ satisfies similar properties as in the statement of the lemma. First, note

that G̃ is constant equal to yi on O(xi). which implies yi ∈ R(G̃) for every i = 1, ...,m.

Therefore, conv{y1, ..., ym} ⊂ R(G̃). Now,

∀x ∈ X, G̃(x) ∈ conv

{
{y1, ..., ym} ∪ Im

(
1

n
F (n)

)}
,

since G̃ is a convex combination of y1, ..., ym and 1
nF

(n). The later implies:

R(G̃) ⊂ conv

{
{y1, ..., ym} ∪ Im

(
1

n
F (n)

)}
⊂ intK.

Consequently, R(F ) ⊂ conv{y1, ..., ym} ⊂ R(G̃) ⊂ int(K). The next step is to estimate

the distance between G̃ and 1
nF

(n). Let x ∈ X :
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• If x ∈ Bi,j then G̃(x) = ρi,j(x)yi + (1− ρi,j(x)) 1
nF

(n)(x), and therefore, using (5.1)∥∥∥∥G̃(x)− 1

n
F (n)(x)

∥∥∥∥ = |ρi,j(x)|
∥∥∥∥yi − 1

n
F (n)(x)

∥∥∥∥ ≤ 7

6
‖yi − zi‖ .

• If x /∈
⋃

(i,j)∈I Bi,j , then G̃(x) = 1
nF

(n)(x).

We conclude that
∥∥∥G̃− 1

nF
(n)
∥∥∥
∞
≤ 7

6 maxi ‖zi − yi‖. Now consider

G = G̃+

(
F − 1

n
F (n)

)
.

Recall that F − 1
nF

(n) is a coboundary. Therefore, G has the same rotation set of G̃,

which is sandwiched between conv{y1, ..., ym} and int(K). Furthermore,

‖G− F‖∞ =

∥∥∥∥G̃− 1

n
F (n)

∥∥∥∥
∞
≤ 7

6
max
i
‖zi − yi‖ . �

At this moment, we have a technical tool to enlarge rotation sets and control the dis-

tance between the potentials. Now we will upgrade the previous lemma also consider-

ing the distance between the convex bodies.

Lemma 5.7. Let F : X → Rd be a continuous function, let K ∈ CB◦(Rd) be such that

R(F ) ⊂ int(K), and let ε = dH(R(F ),K). Then there exists a continuous function G : X →
Rd with the following properties:

1. R(F ) ⊂ R(G) ⊂ int(K)

2. ‖G− F‖∞ ≤ κε

3. dH(R(G),K) ≤ κε

where κ = 29
30 .

Proof. The main idea is to take a polytope which is sufficiently close to R(F ) and then

apply Lemma 5.6. But this is not sufficient to ensure that condition (3) is satisfied, so

we need to enlarge the polytope in order to have the new rotation set moderately close

to K.

First suppose that R(F ) is not a singleton. Fix δ ∈ (0, ε5) with Bδ(R(F )) ⊂ intK. Now,

by [S, Theorem 1.8.16] we can take distinct points y1, ..., y` ∈ Bδ(R(F ))\R(F ) such that
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R(F ) ⊂ conv{y1, ..., y`}. Due to the compactness of ∂K, we may choose distinct points

w`+1, ..., wm ∈ ∂K such that:

∂K ⊂
m⋃

j=`+1

B ε
4
(wj).

Hence, since dH(R(F ),K) = ε, there exist distinct points y`+1, ..., ym ∈ int(K) \ R(F )

with ‖yj − wj‖ ≤ ε
3 and d(R(F ), yj) ≤ 2ε

3 for each j = ` + 1, ...,m. Since R per(F ) is

dense in R(F ) which by assumption is not a singleton, we can also find distinct points

z1, ..., zm ∈ Rper(F ) \ ∂R(F ) such that:

‖zj − yj‖ ≤
4ε

5

for all j = 1, ...,m. By Lemma 5.6, we can perturb F , and obtain a continuous G : X →
Rd such that:

‖G− F‖∞ ≤
7

6
· 4ε

5
=

28ε

30

and

R(F ) ⊂ conv({y1, ..., ym}) ⊂ R(G) ⊂ int(K).

So conditions (1) and (2) are satisfied. In order to check the reamining condition (3),

note first that dH(K,R(G)) = dH(∂K, ∂R(G)). Let x ∈ ∂K. Then there exists wj ∈ ∂K
such that w ∈ B ε

4
(wj). So:

d(w, ∂R(G)) ≤ ‖w − yj‖

≤ ‖w − wj‖+ ‖wj − yj‖

≤ ε

4
+
ε

3

≤ 28ε

30
.

Therefore dH(∂K, ∂R(G)) ≤ 28
30ε and this implies condition (3).

For the case when R(F ) is a singleton, consider a continuous perturbation F ′ of F near

two disjoint periodic orbits, say O(x1) and O(x2), such that:

•
∫
F ′dµO(x1) 6=

∫
F ′dµO(x2)

• R(F ′) ⊂ int(K)

• ‖F − F ′‖∞ ≤ 0.01ε

• dH(R(F ′),K) ≤ 1.01ε

and apply the same procedure as before to F
′
. �
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As a straightforward consequence of the previous lemma, we have the following propo-

sition:

Proposition 5.8. Let F : X → Rd be a continuous function and let K ∈ CB(Rd) such

that R(F ) ⊂ relint(K). Then, there exists a continuous function G : X → Rd such that

‖F −G‖∞ ≤ CdH(R(F ),K) and R(G) = K, where C = 30.

Proof. We divide the proof in two cases. First suppose that int(K) 6= ∅. Apply Lemma

5.7 recursively to obtain a sequence of continuous functions Fn : X → Rd such that:

• dH(Fn,K) ≤ κndH(R(F ),K)

• ‖Fn − Fn+1‖∞ ≤ κndH(R(F ),K)

where F1 = F . Then {Fn}n∈N is a Cauchy sequence, and therefore converges to a

continuous function G : X → Rd which satisfies:

‖F −G‖∞ ≤
∞∑
j=1

‖Fj+1 − Fj‖∞ ≤
∞∑
j=1

κjdH(R(F ),K) ≤ 30dH(R(F ),K).

By Proposition 5.4, the map R : C(X,Rd)→ CB(Rd) is continuous, and so:

R(G) = R(limFn) = limR(Fn) = K.

Thus, the proof of the first case is finished. Now suppose that int(K) = ∅. Let P(K)

be the least affine hyperspace passing through K. We can consider F as a function

taking values in P(K) and this affine hyperplane can be identified with R`, where

` = dimP(K). In this situation we can see K as a subset of this R` with int(K) 6= ∅.
Consequently, the proof is reduced to the first case. �

Now we need an adjustment in order to drop the hypothesis R(F ) ⊂ relintK.

Lemma 5.9. Let F : X → Rd be a continuous function, K ∈ CB(Rd), and ε > 0. Suppose

that dH(R(F ),K) ≤ ε. Then there exists a continuous function F ′ : X → Rd with:

1) R(F ′) ⊂ relint(K)

2) ‖F − F ′‖∞ ≤ 2ε

3) There exists a continuous functionF ′′ : X → Rd cohomologous toF ′ such that Im(F ′′) ⊂
P(K), where P(K) is the least affine hyperspace containing K.
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Proof. The strategy is similar of the proof Lemma 5.6. Apply Lemma 5.5 to F and

ε > 0 to obtain n ∈ N with Im
(
F (n)

n

)
∈ Bε(R(F )). Also, apply Lemma 5.3 to K and

δ = min{ε, 12} to find L ∈ CB(Rd) with L ⊂ relint(K) and dH(K,L) ≤ δ. Define F ′′ as:

F ′′ = PL

(
1

n
F (n)

)
,

where PL is the projection onto L, that is, the map which sends each point of the space

to its closest point in L. Since PL is Lipschitz, the function F ′′ is continuous. Also

R(F ′′) ⊂ relint(K), so the next step is to estimate dH(R(F ′′),K). Given y ∈ K, due to

the denseness of R per(
1
nF

(n)) in R(F ), there exists z ∈ R per(
1
nF

(n)) such that ‖y − z‖ ≤
2ε. Let O(x) be the corresponding periodic orbit. We note that:

∥∥∥∥y − ∫ F ′′dµO(x)

∥∥∥∥ ≤ ‖y − z‖+

∥∥∥∥z − ∫ F ′′dµO(x)

∥∥∥∥
≤ 2ε+

∥∥∥∥∫ 1

n
F (n) − F ′′dµO(x)

∥∥∥∥
≤ 2ε+

∫
2εdµO(x)

≤ 4ε,

since
∥∥ 1
nF

(n) − F ′′
∥∥
∞ ≤ 2ε. From above we get that dH(K,R(F ′′)) ≤ 4ε. Now, it

suffices to consider F ′ = F ′′ + (F − 1
nF

(n)), which is cohomologous to F ′′. Finally,

∥∥F − F ′∥∥∞ =

∥∥∥∥F ′′ − 1

n
F (n)

∥∥∥∥
∞
≤ 2ε. �

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. LetF ∈ C(X,Rd) and ε > 0. LetK ∈ CB(Rd) such that dH(K,R(F )) ≤
ε. Let F ′ and F ′′ given by Lemma 5.9. Then apply Proposition 5.8 to F ′′ in order to

obtain a continuous function G̃ : X → Rd with the properties that R(G̃) = K and∥∥∥F ′′ − G̃∥∥∥
∞
≤ 4Cε. So, we define:

G = G̃+ (F ′ − F ′′).

Hence R(G) = K, since F ′ is cohomologous to F ′′. Moreover,

∥∥G− F ′∥∥∞ =
∥∥∥G̃− F ′′∥∥∥

∞
≤ 4Cε.
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Therefore:

‖F −G‖∞ ≤
∥∥F − F ′∥∥∞ +

∥∥F ′ −G∥∥∞ ≤ 2ε+ 4Cε = (2 + 4C)ε.

We have just proved that

R(B(2+4C)ε(F )) ⊃ Bε(R(F )),

and this inclusion implies the openness of R. The surjectivity follows directly from

Proposition 5.8. LetK ∈ CB(Rd), v ∈ relint(K) and F ≡ v. Thus, applying Proposition

5.8 to F , we get a continuous function G ∈ C(X,Rd) such that R(G) = K. �

5.5 Directions for further research

In this section we discuss related problems and open questions.

5.5.1 The uniqueness property

Let F ∈ C(X,Rd). We say that F satisfies the uniqueness property if for each v ∈ ∂R(F ),

there exists a unique µ ∈ MT for which
∫
F dµ = v. As mentioned in the introduc-

tion, in the one-dimensional case, generic functions f ∈ C(X,R) satisfy the uniqueness

property. So we ask:

Question 5.10. Is it true that generic functions F ∈ C(X,Rd) satisfy the uniqueness

property?

Of course, we can replace C(X,Rd) for other spaces of functions. Following the proof

in the one-dimensional case in [Je1, Theorem 3.2], one can show the following:

Proposition 5.11. The set of F ∈ C(X,Rd) which satisfy the uniqueness property is a

Gδ set.

Therefore in order to give a positive answer to Question 5.10, it is sufficient to prove

denseness.

5.5.2 The map R(·) is not open in general

It is natural to ask if the map R(·) is open if we replace C(X,Rd) by other spaces of

functions. The answer is negative in the space of Lipschitz functions: Let Lip(X,R2) be
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the subspace of Lipschitz potentials endowed with the Lipschitz norm

‖f‖Lip = ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
d(x, y)

.

Then, we have the following:

Proposition 5.12. Suppose that T has a fixed point x0. Then there exists an open set

U ⊂ Lip(X,Rd) such that for all F ∈ U , ∂R(F ) is non-differentiable. In particular, the

restriction R|Lip(X,R2) is not open.

Proof. The proof follows the same spirit as [Je2, Proposition 4.12]. Let define the func-

tion F (x) = (0,−2d(x, x0)) and the open set U = B 1
2
(F ). Let G ∈ Lip(X,R2) be a

Lipschitz perturbation of F with ‖G‖Lip <
1
2 . We claim that (F + G)(x0) is a corner of

R(F + G). Since the rotation map is equivariant with respect to translations, we can

assume that G(x0) = (0, 0). Thus,

(1, 1) · (F +G)(x) ≤ −2d(x, x0) +
√

2G(x) ≤ −2d(x, x0) +

√
2

2
d(x, x0) ≤ 0

Analogously (1,−1) · (F + G)(x) ≤ 0. We conclude that δx0 is a maximizing measure

for (1,±1) · (F +G), thus: ∫
(F +G)dδ0 = (0, 0)

is a corner for R(F +G), because R(F +G) contains (0, 0) and is contained in the cone

{(x, y) ∈ R2 : y ≤ −|x|} with vertex (0, 0). Since convex bodies with C1 boundary is

dense, we conclude that R|Lip(X,R2) is not open at F . �

From this proposition, we also conclude that differentiability of the rotation set bound-

ary is not generic when we consider the space of Lipschitz functions.

5.5.3 Genericity result for other spaces

In this article we considered the case of continuous potentials. We propose to investi-

gate the same question for other spaces of functions and other dynamics:

Question 5.13. Is it true that the rotation set is strictly convex for generic potentials in

some dense subspace of C(X,Rd) ?

For example, replace C(X,Rd) by the space of α-Hölder potentials Cα(X,Rd) with the

Hölder norm. Also, in view of the fish example and Proposition 5.12, it seems that if we

impose regularity to the potential, then the corresponding rotation set R(F ) is going to

have a considerable number of corners in the boundary. So, we pose the following:
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Question 5.14. It is true that the boundary of rotation set has a (full measure) dense

subset of corners for generic potentials in Cα(X,Rd) ?

For more discussion, see [B, Section 2].
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