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Setting
A measurable linear 2D cocycle consists of:

(Ω,S, μ) – a probability space;
T : Ω→ Ω – an ergodic automorphism;
F : Ω→ GL(2,R) – a measurable function.

The cocycle products F (n)(ω) (where ω ∈ Ω, n ∈ Z) are defined
by:

F (1)(ω) = F (ω)

F (n+m)(ω) = F (n)(T mω)F (m)(ω)

F is called log-integrable if
∫

Ω

logmax
�

‖F (ω)‖, ‖F (ω)−1‖
�

︸ ︷︷ ︸

automatically ≥1

dμ(ω) <∞ .
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Products of i.i.d. random matrices

A special case: one-step cocycles.

Ω = AZ product space, μ = product (Bernoulli) measure π⊗Z
on Ω

T = σ = shift on Ω

F : Ω→ GL(2,R) measurable such that F (ω) only depends
on ω0

Let ν := F∗(μ) = probability measure on GL(2,R) – it contains all
the relevant information.

The cocycle is log-integrable iff ν has finite first moment:
∫

GL(2,R)
logmax(‖g‖, ‖g−1‖)dν(g) <∞ .
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Lyapunov exponents and Oseledets spaces

If (T ,F ) is a measurable log-integrable 2D cocycle, then Oseledets
theorem applies, giving Lyapunov exponents λ1 ≥ λ2 and
Oseledets spaces (defined for μ-a.e. ω)

Ei(ω) :=

�

v ∈ R2 ; v = 0 or lim
n→±∞

1
n
log ‖F (n)(ω)v‖ = λi

�

.
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Valeriy Iustinovich Oseledets

25 May 1940 – 13 March 2025



A naive question Theorems Other classes? Proofs: random i.i.d. Proofs: flexibility

Oseledets angle θ := Ý(E 1,E 2)

If a cocycle has distinct Lyapunov exponents λ1 > λ2, then the
Oseledets spaces are 1-dimensional and transverse:

R2 = E1(ω)⊕ E2(ω) (μ-a.e. ω).

So the following angle function is defined μ-a.e.:

θ(ω) := Ý(E1(ω),E2(ω)) .

Angles can be small: ess infθ = 0 is a common feature of
nonuniform hyperbolicity (if λ1 > 0 > λ2)

How small can they be?
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Two observations and a question

Proposition (Tempered property, Oseledets 1968)
The angle θ is subexponential along the orbit of μ-a.e. ω:

lim
n→±∞

1
|n|

logθ(T nω) = 0 .

Remark

f ∈ L1(μ) ⇒ f ◦T n

n → 0 a.e.

Question
Is logθ always integrable? 🤔

Answer
NO, even for one-step cocycles!
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Products of i.i.d. matrices: an example and a criterion

Theorem (B.–Lessa, 2025)
There exists a probability ν on GL(2,R) with finite first moment
such that λ1 > λ2 and θ := Ý(E1,E2) is not log-integrable. 👎

Theorem (B.–Lessa, 2025)
If ν is a probability ν on GL(2,R) with finite second moment:
∫

GL(2,R)

�

logmax(‖g‖, ‖g−1‖)
�2 dν(g) <∞

and λ1 > λ2, then θ := Ý(E1,E2) is log-integrable. 👍
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Generalization?

Question
Does the previous theorem hold for general (measurable)
cocycles? 🤔

Answer
NO. In fact, no integrability condition on the cocycle is sufficient
to guarantee log-integrability of the Oseledets angle function.
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Flexibility of Oseledets data for measurable cocycles

Theorem (B.–Lessa, 2025)
Given:

An ergodic automorphism T of a non-atomic Lebesgue space
(Ω,S, μ);
a locally bounded function N : GL(2,R)→ R s.t.
N(g) ≥ max
�

‖g‖, ‖g−1‖
�

;
numbers r1 > r2;
a Borel probability measure η on RP1 × RP1

r∆;
Then there exists a measurable F : Ω→ GL(2,R) with
N ◦ F ∈ L1(μ) s.t. the cocycle (T ,F ) has Lyapunov exponents
λ1 = r1, λ2 = r2, and the Oseledets spaces have joint distribution
η – that is, (E1,E2)∗μ = η.
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Bounded cocycles

Question
Can we take F ∈ L∞ in the previous theorem?

Answer
NO. If the cocycle is bounded, then the distribution ζ of
log sinÝ(E1,E2) must have bounded gaps.

Definition
Let ζ be a Borel probability measure on R. A gap of ζ is a
bounded connected component of Rr supp(ζ). If the lengths of
gaps of ζ are bounded above, then we say that ζ has bounded
gaps.
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Flexibility of Oseledets data for L∞ cocycles

Bounded gaps are the only obstruction for flexibility:

Theorem (B.–Lessa, 2025)
Given:

An ergodic automorphism T of a non-atomic Lebesgue space
(Ω,S, μ);
numbers r1 > r2;
a Borel probability measure η on RP1 × RP1

r∆ s.t.
(log sinÝ)∗η has bounded gaps;

Then there exists a bounded measurable F : Ω→ GL(2,R) s.t. the
cocycle (T ,F ) has Lyapunov exponents λ1 = r1, λ2 = r2, and the
Oseledets spaces have joint distribution η.
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Two general questions

Question
Take your favorite class of linear cocycles.
What can you say about the distribution of Oseledets angles?

Question
Do quantitative properties of the distribution of Oseledets angles
have interesting dynamical consequences?

For Schrödinger cocycles, the regularity of the integrated density of
states is related to the distribution of Oseledets angles.
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Hénon map / SRB: experimental findings

f (x , y) = (1− ax2 + y , bx) with μ = alleged SRB

Oseledets spaces E1 and E2 for a = 1.4, b = 0.4.

(a) (b)

Figure 2: The invariant subspaces E1(x) and E2(x) for the Hénon map, respectively

on the left and on the right. Notice that the expanding direction is almost tangent

to the attractor.

We conclude this essay describing another way to calculate the largest
Lyapunov exponent, which relates it to divergence speed of nearby points,
and is inspired by what we said in the introduction.

Let x ∈ M be a point in the manifold M and let T : M → M be a
di�eomorphism of M ⊂ Rm. E1(x) is the subspace corresponding to the
largest Lyapunov exponent λ1(x) of T . If we consider a generic point x′

close to x, then the vector x − x′ has non-zero component in E1(x), since
the hyperplane orthogonal to E1(x) has measure zero. Iterating T for a big
number of times N , we have

‖TN(x)− TN(x′)‖ ≈ eNλ1(x)‖x− x′‖.

Then, supposing ‖x− x′‖ = e−n, we de�ne the nth divergence speed by

DSn(x, x
′) = min{i ≥ 1 : ‖T i(x)− T i(x′)‖ ≥ e−1}.

If we suppose that our transformation is ergodic with respect to some measure
µ, then we can approximate λ1(x) almost everywhere with

n

DSn(x, x′)
,

with x′ some generic point such that ‖x−x′‖ = e−n. In fact, for a su�ciently,
but not too much, large k, we have

log ‖T k(x)− T k(x′)‖
k

≈ λ1 +
log ‖x− x′‖

k

11

Plot by Mauro Artigiani, 2013.
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Hénon map / SRB: experimental findings

f (x , y) = (1− ax2 + y , bx) with μ = alleged SRB

Distribution of Ý(E1,E2) for a = 1.179, b = 0.3.
252 V.S. ANISHCHENKO et al.

at the intersection of the stable and unstable
manifolds the angle between them is not equal to
zero. The intersection of the manifolds is every-
where transversal and the appearance of homo-
clinic trajectories does not lead to the birth of stable
periodic orbits. The hyperbolic chaotic set remains
the only attracting limit set and in this case we speak
of the quasihyperbolic attractor.

NUMERICAL STUDIES OF
THE PROPERTIES OF
QUASIHYPERBOLIC ATTRACTORS
AND QUASIATTRACTORS

The most direct method for numerical analysis,
whether a trajectory on the chaotic attractor is

hyperbolic or not, is the exploration of the behavior
of the angle between stable and unstable manifolds
of the chaotic trajectory when moving on the
attractor. The algorithm of such an investigation
was proposed in (Lai et al., 1993) where it was used
in general to analyze hyperbolicity of chaotic
saddles. This procedure consists in the forward
and backward transformation of an arbitrary
vector by a linearized evolution operator along
the trajectory considered. It allows one to find the
angle between the directions of stability and
instability for various points of the trajectory on
the attractor. Naturally, such calculations can be
more easily carried out for 2-D invertible maps.
We shall calculate angles between manifolds of a

chaotic trajectory for different points of the attrac-
tor and analyze their statistics. Based on these results
one can conclude whether the attractor is hyper-
bolic or one deals with the quasiattractor. We shall
also calculate dependencies of Lyapunov exponents
of chaotic motions on the controlling parameters.
A typical example for map (1) distribution of the

probabilities of the angle between the manifolds of
a chaotic trajectory P(4) on the quasiattractor is
shown in Fig. 2(a). The probability of the angle in
the neighborhood of zero is finite. This fact indi-
cates the presence of tangency points of manifolds.
Practically it means the existence of non-robust

(a)

(b)

(c)
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FIGURE 2 Calculation results of the characteristics for the
Henon attractor (a) A distribution of the probabilities of the
angle 0 between stable and unstable manifolds for a 1.179
and b=0.3, (b) the probability that the angle 0 falls within
the interval 0 < 0_< 1 (0 1) versus parameter a for b=0.3
and (c) a dependence of the largest Lyapunov exponent on
parameter a for b 0.3.

homoclinic curves of saddle cycles along which
manifolds of the cycles approach each other
tangentially. The points of the chaotic trajectory
falling within small enough neighborhoods of such
curves contribute to the probability that the angle
falls within the neighborhood of zero.
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MME: theoretical results

The following is a consequence of recent (Jan. 2025) work of
Buzzi, Crovisier, and Sarig on exponential mixing for SPR diffeos:

Corollary
Let f : M →M be a topologically mixing C∞ diffeomorphism of a
compact surface M with htop(f ) > 0. Let μ be the (necessarily
unique) measure of maximal entropy. Then logÝ(E1,E2) ∈ L1(μ)
(with its distribution satisfying a power bound).

Thanks Snir Ben Ovadia for this observation.
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Products of i.i.d. matrices: recap

ν = probability on GL(2,R)

pth moment of ν :=

∫

GL(2,R)

�

logmax(‖g‖, ‖g−1‖)
�p dν(g)

Theorem (Example of non-log-integrable angle)
There exists a probability ν on GL(2,R) with finite first moment
such that λ1 > λ2 and θ := Ý(E1,E2) is not log-integrable. 👎

Theorem (Criterion of log-integrability)
If ν is a probability ν on GL(2,R) with finite second moment and
λ1 > λ2, then θ := Ý(E1,E2) is log-integrable. 👍
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Past and future

If (T ,F ) is any log-integrable 2D cocycle with λ1 > λ2, the
Oseledets direction E1(ω) only depends on the past orbit
(T nω)n<0, while E2(ω) only depends on the future orbit
(T nω)n≥0.

In particular, if the cocycle is one-step, then

E1(ω) = E1(ω
−), ω− = (. . . , ω−2, ω−1) ,

E2(ω) = E2(ω
+), ω+ = (ω0, ω1, . . . ) .

So the two directions E1,E2 are independent,
i.e., their joint distribution is a product measure
m1×m2, where m1 and m2 are measures on RP1

called Furstenberg measures.
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Summoning help

∫

Ω

| log sinθ| dμ =

∫

RP1

∫

RP1

| log sinÝ(ξ1, ξ2)| dm1(ξ1)

︸ ︷︷ ︸

f (ξ2)

dm2(ξ2) .

Theorem (Benoist–Quint, 2016)
If the matrix distribution ν has finite
second moment and is strongly
irreducible, then the function f above is
continuous.

So our Theorem 2 (the criterion for log-integrability) holds true in
the strongly irreducible case. ✔️
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Reduction to the reducible case

Suppose ν is not strongly irreducible. This means that there is a
finite set S ⊂ RP1 such that g(S) = S for ν-a.e. g ∈ GL(2,R).

If #S ≥ 3, then λ1(ν) = λ2(ν): nothing to do. ✔️

If #S = 2, then either λ1(ν) = λ2(ν) or
{E1(ω),E2(ω)} = S for a.e. ω: nothing to do. ✔️

If #S = 1, then the cocycle is reducible.
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Reducible case

WLOG (after change of basis, rescaling, time reversal),

F (ω) =

�

a(ω0) b(ω0)
0 1

�

,

∫

log |a| < 0 .

Lemma (Oseledets data for triangular cocycle)

λ1 = 0 , λ2 =
∫

log |a| ,

E1(ω) = span
�

X(ω)
1

�

, E2(ω) = span
�

1
0

�

,

X(ω) =
∞
∑

n=0
a(T−1ω)a(T−2ω) · · · a(T−nω)b(T−n−1ω) .

Note: log sinÝ(E1,E2) ∈ L1 ⇔ log+ |X | ∈ L1
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Proof of Theorem 1: an example with logθ 6∈ L1

We leave Theorem 2 in limbo, and prove Theorem 1. Here’s an
explicit example:

F (ω) :=

�

e−1 eψ(ω0)

0 1

�

, where ψ ∈ L1
r L2 , ψ ≥ 0 .

Proof: The previous formula becomes

X(ω) =
∞
∑

n=0
eψ(ω−n−1)−n .

WTS: logX 6∈ L1 . (Note that X ≥ 1, since ψ ≥ 0.)

We use the bound X(ω) ≥ eY (ω) , where

Y (ω) := sup
n≥0

h

ψ(ω−n−1)− n
i

.
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Lemma
Given ψ ∈ L1, ψ ≥ 0, let

Y (ω) := sup
n≥0

h

ψ(ω−n−1)− n
i

.

Then Y ∈ L1 ⇔ ψ ∈ L2.

Proof: By the “layer cake formula”,
∫

Y dμ <∞ ⇔
∞
∑

k=1
μ[Y ≥ k]
︸ ︷︷ ︸

bk

<∞ .

1− bk = μ[Y < k]

= μ
h

ψ(ω−n−1) < n + k, ∀n ≥ 0
i

=
∞
∏

n=0
(1− an+k) with aj := μ[ψ ≥ j] (independence).
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Proof of the Lemma (continued): aj := μ[ψ ≥ j], with ψ ∈ L1, so
0 ≤ aj ≤ 1 and (aj) ∈ ℓ1.

bk = 1−
∞
∏

j=k
(1− aj) �

∞
∑

j=k
aj . Compare:

�⋂

Ac
j

�c
=
⋃

Aj 🤓

Y ∈ L1 ⇔
∞
∑

k=1
bk <∞

⇔
∞
∑

k=1

∞
∑

j=k
aj <∞

⇔
∞
∑

j=1
j aj <∞

⇔ ψ ∈ L2 (Lemma and Thrm 1).
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Proof of Theorem 2 (criterion for logθ ∈ L1)

We are reduced to the case

F (ω) :=

�

±eϕ(ω0) ±eψ(ω0)

0 1

�

, ϕ ∈ L2, ψ+ ∈ L2,

∫

ϕ < 0 .

WTS: log+ |X | ∈ L1 , where

X(ω) =
∞
∑

n=0
±eSn(ω) , Sn(ω) := ψ(ω−n−1) +

n
∑

i=1
ϕ(ωn) .
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Proof of Theorem 2 (continued): Let c > 0.

Sn(ω) ≤ ψ+(ω−n−1) +
n
∑

i=1
ϕ(ωn)

= −cn +
�

ψ+(ω−n−1)− cn
�

+

�

2cn +
n
∑

i=1
ϕ(ω−i)

�

≤ −cn +Y (ω) + Z(ω) ,

where Y and Z are defined by taking supn≥0[· · · ].

Previous Lemma applied to c−1ψ+ ∈ L2 gives Y ∈ L1 .
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Proof of Theorem 2 (continued): c > 0 small ⇒
∫

(2c +ϕ) < 0 ⇒

Z(ω) := sup
n≥0

n
∑

i=1
(2c + ϕ(ω−i))

= rightmost position of a random walk with
drift to the left and square-integrable steps

∈ L1 by Kiefer and Wolfowitz (1956).
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Proof of Theorem 2 (finale):

|X(ω)| ≤
∞
∑

n=0
eSn(ω)

≤
∞
∑

n=0
e−cn+Y (ω)+Z(ω)

≤ Const.eY (ω)+Z(ω)

Therefore:

log+ |X(ω)| ≤ Const+Y (ω) + Z(ω)

∈ L1 .
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Flexibility for measurable cocycles: recap

Theorem
Given:

An ergodic automorphism T of non-atomic Lebesgue space
(Ω,S, μ);
a locally bounded function N : GL(2,R)→ R s.t.
N(g) ≥ max
�

‖g‖, ‖g−1‖
�

;
numbers r1 > r2;
a Borel probability measure η on RP1 × RP1

r∆;
Then there exists a measurable F : Ω→ GL(2,R) with
N ◦ F ∈ L1(μ) s.t. the cocycle (T ,F ) has Lyapunov exponents
λ1 = r1, λ2 = r2, and the Oseledets spaces have joint distribution
η – that is, (E1,E2)∗μ = η .
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Flexibility for measurable cocycles

Theorem (Simplified statement
👶

)
Given:

An ergodic automorphism T of non-atomic Lebesgue space
(Ω,S, μ);
the function N : GL(2,R)→ R given by
N(g) := max
�

‖g‖, ‖g−1‖
�

;
numbers r1 > r2;
a Borel probability measure η on (0, π2 ];

Then there exists a measurable F : Ω→ GL(2,R) with
N ◦ F ∈ L1(μ) s.t. the cocycle (T ,F ) has Lyapunov exponents
λ1 = r1, λ2 = r2, and the Oseledets angle θ = Ý(E1,E2) has
distribution η – that is, θ∗μ = η .
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Nearly invariant functions with prescribed distributions

Lemma
Given:

An ergodic automorphism T of non-atomic Lebesgue space
(Ω,S, μ);
a Borel probability measure η on R;
ϵ > 0.

Then there exists a measurable function f : Ω→ R with

f∗μ = η and ‖f ◦ T − f ‖L1(μ) < ϵ .

Remark
There is an L∞ version of the Lemma (under a bounded gap
assumption), which allows to prove Theorem 4 (Oseledets
flexibility for bounded cocycles).
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Lemma ⇒ (simplified) Theorem

The Lemma gives α : Ω→ (0, π2 ] with the prescribed distribution
and ‖f ◦ T − f ‖L1(μ) < ϵ, where f = log sin α

2 .

Choice of the matrices:

α(ω)

F (ω)

α(Tω)

Adjust stretch factors to get the desired Lyapunov exponents (no
stretch when angles are too small).

So we are left to prove the Lemma...
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Skyscraper decomposition

Given an ergodic autom. T : (Ω, μ)→ (Ω, μ) and a measble. set
B ⊆ Ω with μ(B) > 0, let Bk be the set of points in B whose first
return to B occurs at time k. The Kakutani skyscraper

decomposition is Ω =
∞
⊔

k=1

k−1
⊔

i=0
T i(Bk) mod 0.

B1 B2

TB2

B3

TB3

T 2B3

...

...

...

...

B
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Kac’s lemma
The measure of the kth tower is:

πk = kμ(Bk)

In particular,
∞
∑

k=1
πk = 1

Equivalently, the average return time to B is 1
μ(B)

(Kac’s lemma).
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A converse to Kac’s lemma: flexibility of π

Theorem (Alpern–Prasad, 1990)
If T is an ergodic automorphism of a non-atomic
Lebesgue space and π = (π1, π2, . . . ) is s.t.

πk ≥ 0 ,
∞
∑

k=1
πk = 1 , GCD{k ; πk 6= 0} = 1 ,

there exists a skyscraper whose towers have
measures as specified by the sequence π.

Example (Rokhlin–Halmos Lemma, 1940s)

πk :=







ϵ if k = 1,
1− ϵ if k = n,
0 otherwise.
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Lemma (Nearly invariant f with prescribed distrib.)
Given the automorphism T, a Borel probability measure η on R,
and ϵ > 0, there exists a measurable function f : Ω→ R with
f∗μ = η and ‖f ◦ T − f ‖L1(μ) < ϵ.

Proof:

Decompose η as a convex combination
∑

pnηn of compactly
supported measures.
Take a sequence kn ↗∞ fast, with GCD = 1.
By Alpern–Prasad, there is a skyscraper composed of towers
of heights k1, k2, . . . and corresponding masses p1, p2, . . .

Choose a function f which is invariant on the tower of height
kn and has distribution ηn.
Estimate the L1 norm...
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