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A naive question
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Setting

A measurable linear 2D cocycle consists of:

e (9, S, ) — a probability space;
o T:Q — Q — an ergodic automorphism;
e F:Q — GL(2,R) — a measurable function.

The cocycle products F(")(w) (where w € Q, n € Z) are defined
by:

FO(w) = F(w)
Firtm (@) = FIM(Tmw)FImM(w)

F is called log-integrable if

J log max(llF(w)ll, ||F(w)_1||) du(w) < oo.
Q

v
automatically >1
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Products of i.i.d. random matrices

A special case: one-step cocycles.

o Q= AZ product space, 4 = product (Bernoulli) measure 7®%
on Q

e T =0 = shift on Q
e F:Q — GL(2, R) measurable such that F(w) only depends
on Wy
Let V := F4« () = probability measure on GL(2, R) — it contains all

the relevant information.

The cocycle is log-integrable iff V has finite first moment:

f log max(lgll, Ilg7*11) dv(g) < 0.
GL(2,R)
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Lyapunov exponents and Oseledets spaces

If (T, F) is a measurable log-integrable 2D cocycle, then Oseledets
theorem applies, giving Lyapunov exponents A1 = A» and
Oseledets spaces (defined for y-a.e. w)

1
Ei(w) ::{vEle;v:Oor lim —IogllF(")(w)v”:)\;}.
n—»:l:mn
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Oseledets angle 6 .= X(E", E?)

If a cocycle has distinct Lyapunov exponents A1 > Ay, then the
Oseledets spaces are 1-dimensional and transverse:

R? = £ (w) ® Ex(w) (U-ae. w).

So the following angle function is defined U-a.e.:

O(w) = £(E'(w), E*(w)) |-

Angles can be small: essinf@ =0 is a common feature of
nonuniform hyperbolicity (if A1 >0 > A»)

How small can they be?
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Two observations and a question

Proposition (Tempered property, Oseledets 1968)

The angle 0 is subexponential along the orbit of U-a.e. W:

1
lim —log@(T"w)=0.

n—=+00 Inl

1 foT"
felL (IJ) = T—»Oa.e.
Question
Is log O always integrable? & J

NO, even for one-step cocycles!
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Products of i.i.d. matrices: an example and a criterion

Theorem (B.—Lessa, 2025)

There exists a probability V on GL(2, R) with finite first moment
such that A1 > A, and 8 := £(EY, E?) is not log-integrable. ~

Theorem (B.—Lessa, 2025)
If V is a probability v on GL(2, R) with finite second moment:

— 2
f [ log max(llgll, llg™*1I)]" dv(g) <
GL(2,R)

and A1 > Ao, then 0 := £(E*, E?) is log-integrable. -=
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Generalization?

Question

Does the previous theorem hold for general (measurable)
cocycles? &

NO. In fact, no integrability condition on the cocycle is sufficient
to guarantee log-integrability of the Oseledets angle function.
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Flexibility of Oseledets data for measurable cocycles

Theorem (B.—Lessa, 2025)

Given:

@ An ergodic automorphism T of a non-atomic Lebesgue space
(Q, S, L)
@ a locally bounded function N: GL(2, R) — R s.t.
N(g) = max(ligll, llg™1I);
@ numbers rp > ry;
o a Borel probability measure nf on RP* x RP! \ A;
Then there exists a measurable F: Q — GL(2, R) with
No F € LY(u)|s.t. the cocycle (T, F) has Lyapunov exponents

A1 =r1, Ax = ), and the Oseledets spaces have joint distribution
n - that is, (El, Ez)*[,l =n.

.
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Bounded cocycles

Question

_——

Can we take F € L® in the previous theorem?

NO. If the cocycle is bounded, then the distribution g of
logsin £(E;, Ez) must have bounded gaps.

N

Definition

Let ¢ be a Borel probability measure on R. A gap of £ is a
bounded connected component of R N\ supp({). If the lengths of
gaps of  are bounded above, then we say that  has bounded

gaps.

A
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Flexibility of Oseledets data for L cocycles

Bounded gaps are the only obstruction for flexibility:

Theorem (B.—Lessa, 2025)
Given:
@ An ergodic automorphism T of a non-atomic Lebesgue space
(2,8, ),
@ numbers 1 > ry;
o a Borel probability measure N on RP! x RPN\ A s.t.
(logsin £)« N has bounded gaps;
Then there exists a bounded measurable F: Q — GL(2, R) s.t. the
cocycle (T, F) has Lyapunov exponents A1 = r1, Ao = ra, and the
Oseledets spaces have joint distribution n.




Other classes?
[ leJele]

Two general questions

Question

Take your favorite class of linear cocycles.
What can you say about the distribution of Oseledets angles?

Question

Do quantitative properties of the distribution of Oseledets angles
have interesting dynamical consequences?

v

For Schrédinger cocycles, the regularity of the integrated density of
states is related to the distribution of Oseledets angles.
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Hénon map / SRB: experimental findings

f(x, y) = (1— ax®>+y, bx) with 4 = alleged SRB

Oseledets spaces E; and E, for a=1.4, b =0.4.
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Plot by Mauro Artigiani, 2013.
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Hénon map / SRB: experimental findings

f(x, y) = (1— ax?+y, bx) with u = alleged SRB

Distribution of £(E;, Ep) for a=1.179, b =0.3.
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Plot by Anishchenko, Vadivasova, Strelkova, and Kopeikin, 1998.
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MME: theoretical results

The following is a consequence of recent (Jan. 2025) work of
Buzzi, Crovisier, and Sarig on exponential mixing for SPR diffeos:

Let f: M — M be a topologically mixing C*® diffeomorphism of a
compact surface M with hyop(f) > 0. Let U be the (necessarily
unique) measure of maximal entropy. Then log £(Ey, E>) € L1(u)
(with its distribution satisfying a power bound).

Thanks Snir Ben Ovadia for this observation.
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Products of i.i.d. matrices: recap

V = probability on GL(2, R)

p™h moment of V = f [ logmax(llgll, llg™ )] dv(g)
GL(2,R)

Theorem (Example of non-log-integrable angle)

There exists a probability V on GL(2, R) with finite first moment
such that A; > Ao and 6 = A(El, E2) is not log-integrable.

€

Theorem (Criterion of log-integrability)

If V is a probability v on GL(2, R) with finite second moment and
A1 > Ao, then 6 = X(EY, E?) is log-integrable. =

v
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Past and future

If (T, F) is any log-integrable 2D cocycle with A; > A,, the
Oseledets direction Ej(w) only depends on the past orbit
(T"W)n<o0, while Ex(w) only depends on the future orbit
(an)nZO-

In particular, if the cocycle is one-step, then

Ew)=EW), w =(.., 0w w_1),
E(w)=E(w"), w'=(wy,w,...).

So the two directions E;, E, are independent,
i.e., their joint distribution is a product measure
m1 X my, where my and my are measures on RP1
called Furstenberg measures.
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Summoning help

J|Iogsin 0l du = J J |logsin £(&1, &2)| dm1(&1) dma(82).
Q

RPL RP!

f(‘éz)

Theorem (Benoist—Quint, 2016)

If the matrix distribution V has finite
second moment and is strongly
irreducible, then the function f above is
continuous.

So our Theorem 2 (the criterion for log-integrability) holds true in
the strongly irreducible case. v
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Reduction to the reducible case

Suppose V is not strongly irreducible. This means that there is a
finite set S C RP! such that g(S) = S for v-a.e. g € GL(2, R).

o If #5 > 3, then A1(V) = Ao(V): nothing to do. V/

o If #5 =2, then either A1(V) = Az(V) or
{E1(W), Ex(w)} = S for a.e. w: nothing to do. V

@ If #5 =1, then the cocycle is reducible.
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Reducible case

WLOG (after change of basis, rescaling, time reversal),

Flw) = (a((a)o) b(({)o)) , f log|a] <O0.

Lemma (Oseledets data for triangular cocycle)

A=, A= [ loglal,
fi() = span (X(lw )) , Ex(w)=span (é) ,
X(w) = i a( T—lw)a( T—2w) ceea(T"w)b( T_"_lw),
n=0

Note: logsin £(Ey, E;) € L' < logt|X| € L}
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Proof of Theorem 1: an example with log 6 & L}

We leave Theorem 2 in limbo, and prove Theorem 1. Here's an
explicit example:

—1  g¥(wo)
F(w)::(eo el ) where € L'\ 12, ¢ >0.

Proof: The previous formula becomes

[0/0)
X(w) = b,
n=0

WTS: |log X & L' | (Note that X > 1, since ¢y > 0.)

We use the bound | X(w) = e¥(@) | where

Y(w) = sup [w(w_n_l) - n] .

n=0
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Given € LY, >0, let

Y(w) = sup [w(w_n_l) — n].

n=0

Then Y € L' & P el

Proof: By the “layer cake formula”,

o e]
deu<oo = Z/J[YZk]<oo.
k:l\T/

1—bx = M[Y <K]
= w[§(@-r1) <tk ¥n20]

= l_[(l — aptk) with | a; = u[¢ = /]| (independence).
n=0



Proof of the Lemma (continued): a; := U[¢ = j], with ¢ € L, s
0<a;<1and ()€l

by = 1—ﬁ (I—ay) = iaj . Compare: (ﬂAJ?)C:UAj@P

s Yel? [J (Lemma and Thrm 1).
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Proof of Theorem 2 (criterion for log 6 € L)

We are reduced to the case

P(wo) & g¥(wo)
Fw ;:(ieo ’ iel 0),¢GL2, Ut el f¢<o.

WTS: |log™ | X| € L1, where

n

X(w) = Z +e5(@) S (w) = P(W_p1)+ Z d(w,).
n=0

i=1
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Proof of Theorem 2 (continued): Let ¢ > 0.
So(@) < YH(Wope1) + D S(wn)
i=1

= —cn+[¢ T (w_p-1)—cn]+ |:2cn+z¢(w_,-):|
i=1
< —an+YWw)+ Z(w),

where Y and Z are defined by taking sup,sg[-**].

Previous Lemma applied to ¢ 1¢yt € L? gives .
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Proof of Theorem 2 (continued): ¢ > 0 small = f(2c—i— $)<0=>

n

Z(w) = sup ) 20+ 9(w-)
n=ti=1
rightmost position of a random walk with

drift to the left and square-integrable steps

€ L' by Kiefer and Wolfowitz (1956).




Proof of Theorem 2 (finale):
(o]
IX(@)] < D e
n=0
o0
< Z e—cntY(W)+Z(w)

n=0
< Const.e¥(@)+Z(w)

Therefore:

log™ | X(w)| < Const + Y(w) + Z(w)
elLl. O
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Flexibility for measurable cocycles: recap

Given:

@ An ergodic automorphism T of non-atomic Lebesgue space
(2, S, 1);
@ a locally bounded function N: GL(2, R) = R s.t.
N(g) = max(llgll. lle~*11);
@ numbers rn > ry;
@ a Borel probability measure nf on RP' x RP1 \ A;
Then there exists a measurable F: Q — GL(2, R) with

NoF € L'(u)|s.t. the cocycle (T, F) has Lyapunov exponents

A1 =r, A2 =y, and the Oseledets spaces have joint distribution
n - that is, | (Ey, B)«p =1 |
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Flexibility for measurable cocycles

Theorem (Simplified statement @)
Given:

@ An ergodic automorphism T of non-atomic Lebesgue space
(Q, S, L)
@ the function N: GL(2, R) — R given by
N(g) == max(llgll, llg1I):
@ numbers ri > ry;
@ a Borel probability measure n on (0, g]
Then there exists a measurable F: Q — GL(2, R) with

NoF € L[*(u) ‘ s.t. the cocycle (T, F) has Lyapunov exponents
A1 =r1, A2 =y, and the Oseledets angle @ = £(E', E?) has

distribution 1 — that is, .
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Nearly invariant functions with prescribed distributions

Given:

@ An ergodic automorphism T of non-atomic Lebesgue space
(2, S, 1),

@ a Borel probability measure n on R;

e £>0.

Then there exists a measurable function f: Q — R with

f*IJ:I'] and ”fo T_f”Ll([J)<E-

There is an L version of the Lemma (under a bounded gap
assumption), which allows to prove Theorem 4 (Oseledets
flexibility for bounded cocycles).
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Lemma = (simplified) Theorem

The Lemma gives a: Q — (0, g] with the prescribed distribution
and ||[f o T — f||;1(u) < €, where f = logsin %.

Choice of the matrices:

F(w)
a(w) T T %( Tw)

Adjust stretch factors to get the desired Lyapunov exponents (no
stretch when angles are too small). O

So we are left to prove the Lemma...
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Skyscraper decomposition

Given an ergodic autom. T: (2, u) — (£, 4) and a measble. set
B C Q with u(B) > 0, let By be the set of points in B whose first
return to B occurs at time k. The Kakutani skyscraper

00 k—1
decomposition is 2 = |_| |_| T'(By) mod 0.
k=1 i=0
T2B3
4
TB> TB;
T T

B: B> B3
- }s
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Kac's lemma

The measure of the kth tower is:

In particular,

Equivalently, the average return time to B is ﬁ (Kac's lemma).
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A converse to Kac's lemma: flexibility of T

Theorem (Alpern—Prasad, 1990)

If T is an ergodic automorphism of a non-atomic
Lebesgue space and T = (Ty, Ty, ... ) is s.t.

oo
M 20, ), M=1, GCD{k; m £0} =1,
k=1

there exists a skyscraper whose towers have
measures as specified by the sequence T.

Example (Rokhlin-Halmos Lemma, 1940s)

£ if k=1,
My = 1—e ifk=n,
0 otherwise.
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Lemma (Nearly invariant f with prescribed distrib.)

Given the automorphism T, a Borel probability measure N on R,
and € > 0, there exists a measurable function f: Q — R with
fald=n and |[f o T — f|l ;1) <E.

Proof:

@ Decompose N as a convex combination . p,N, of compactly
supported measures.

o Take a sequence k, /" 0 fast, with GCD = 1.

@ By Alpern—Prasad, there is a skyscraper composed of towers
of heights ki, ko, ... and corresponding masses pi, po, - - -

@ Choose a function f which is invariant on the tower of height
k, and has distribution n,.

@ Estimate the L! norm... O
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