A PROOF OF DENJOY THEOREM

Definition. Let (X, Y) be a pair of finite subsets of the circle $\mathbb{T}:=\mathbb{R} / Z$. A matching for this pair is a bijection $\phi: X \rightarrow Y$ such that each $x \in X$ is a neighbor of $y=\phi(x)$ in the sense that there exists an interval $I \subset \mathbb{T}$ such that $I \cap(X \cup Y)=$ $\{x, y\}$.

Lemma 1. Let $f \in \operatorname{Homeo}_{+}(\mathbb{T})$ have irrational rotation number α. Let p / q be a Dirichlet approximation for $\alpha .^{1}$ Then any pair of orbit segments of length q admits a matching.

Figure 1. Lemma 1 with $f=R_{\alpha}, \alpha=(\sqrt{5}-1) / 2$, and $q=8$.

Proof. Consider any pair of orbit segments of length q :

$$
\begin{aligned}
& X=\left\{x_{0}, x_{1}=f\left(x_{0}\right), \ldots, x_{q-1}=f^{q-1}\left(x_{0}\right)\right\} \\
& Y=\left\{y_{0}, y_{1}=f\left(y_{0}\right), \ldots, y_{q-1}=f^{q-1}\left(y_{0}\right)\right\}
\end{aligned}
$$

Let us deal first with the case where $X \cap Y \neq \emptyset$ and f is the rotation R_{α}. Interchanging X and Y if necessary, we can assume that $x_{0}=y_{k}$ for some k. Let us check that the map $\phi_{k}: x_{i} \mapsto y_{i+k} \bmod q$ is a matching. Indeed:

- If $0 \leq i<q-k$ then x_{i} and y_{i+k} are neighbors because they are equal.
- If $q-k \leq i<q$ then the shortest interval from $x_{i}=f^{i+k}\left(y_{0}\right)$ to y_{i+k-q} has length equal to the distance between $f^{q}\left(y_{0}\right)$ and y_{0}. This distance is less than the minimal separation between points of any orbit segment of length q, and so the interior of the interval does not intersect any points from $X \cup Y$. Hence x_{i} and y_{i+k-q} are neighbors.

[^0]If f is not a rotation, still the cyclic order of any orbit segment is the same as for the rotation R_{α}, and therefore the assumption $X \cap Y \neq \emptyset$ guarantees the existence of a matching.

Now consider the case where the two segments X and Y are disjoint. Let us deform continuously the second orbit segment: let $Y^{(t)}=\left\{y_{0}^{(t)}, \ldots, y_{q-1}^{(t)}\right\}$ where $y_{i}^{(t)}:=f^{i}\left(y_{0}+t\right)$. Let τ be the least positive number for which $Y^{(\tau)}$ intersects X. As shown above, there is a matching between X and $Y^{(\tau)}$ of the form $x_{i} \mapsto y_{i+k \bmod q}^{(\tau)}$. Now, if t is slightly smaller than τ then $x_{i} \mapsto y_{i+k \bmod q}^{(t)}$ is a matching between X and $Y^{(t)}$ - matchings are clearly stable under perturbations. As t decreases to 0 , no new crossings arise, and therefore the same formula defines a matching.

Lemma 2 (Bounded distortion). Let $f \in \operatorname{Diff}_{+}^{2}(\mathbb{T})$ have irrational rotation number α. Then there exists $\lambda>0$ such that whenever p / q is Dirichlet approximation for α, we have:

$$
\lambda^{-1} \leq\left(f^{q}\right)^{\prime} \leq \lambda
$$

Proof. Let p / q be a Dirichlet approximation for α. Take any two points $x, y \in \mathbb{T}$, and write $x_{i}:=f^{i}(x), y_{i}:=f^{i}(y)$, for $0 \leq i<q$. By Lemma 1 , there is a matching between these two segments of orbit. This means that there exists a permutation σ of $\{0,1, \ldots, q-1\}$ and there exist q pairwise disjoint (possibly degenerate) intervals I_{i} such that $\partial I_{i}=\left\{x_{i}, y_{\sigma(i)}\right\}$. Therefore:

$$
\begin{aligned}
\left|\log \left(f^{q}\right)^{\prime}(x)-\log \left(f^{q}\right)^{\prime}(y)\right| & =\left|\sum_{i=0}^{q-1} \log f^{\prime}\left(x_{i}\right)-\log f^{\prime}\left(y_{i}\right)\right| \\
& \leq \sum_{i=0}^{q-1}\left|\log f^{\prime}\left(x_{i}\right)-\log f^{\prime}\left(y_{\sigma(i)}\right)\right| \\
& =\sum_{i=0}^{q-1}\left|\int_{I_{i}}\left(\log f^{\prime}\right)^{\prime}\right| \\
& \leq \int_{\mathbb{T}}\left|\left(\log f^{\prime}\right)^{\prime}\right|
\end{aligned}
$$

That is, $\lambda^{-1} \leq\left(f^{q}\right)^{\prime}(x) /\left(f^{q}\right)^{\prime}(y) \leq \lambda$ where $\lambda:=\int_{\mathbb{T}}\left|f^{\prime \prime}\right| / f^{\prime}$. Since $\int_{\mathbb{T}} \log \left(f^{q}\right)^{\prime}=1$, there exists y such that $\left(f^{q}\right)^{\prime}(y)=1$, and the lemma follows.

Theorem (Denjoy). Let $f \in \operatorname{Diff}_{+}^{2}(\mathbb{T})$ have irrational rotation number α. Then f is conjugate to the irrational rotation R_{α}.

Proof. By Poincaré Classification Theorem, it is sufficient to show that f admits no wandering interval, i.e., an interval that is disjoint from all its future and past iterates.

For any interval $I \subset \mathbb{T}$, by Lemma 2 we have $\left|f^{q}(I)\right| \geq \lambda^{-1}|I|$ whenever q is the denominator of a Dirichlet approximation for α, where $\lambda \geq 1$ is a finite constant. Since there are infinitely many such q 's, we conclude that I cannot be wandering.

References

[1] Katok, A.; Hasselblatt, B. - Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.
[2] Khanin, K. - Ergodic theory, continued fractions and renormalizations. Chapter 3 of XIV Escuela Latinoamericana de Matemáticas, Solś, Uruguay, 2005.
[3] Milnor, J. - Introductory dynamics lectures. www.math.stonybrook.edu/~jack/DYNOTES
Jairo Bochi
Facultad de Matemáticas, Pontificia Universidad Católica de Chile
www.mat.uc.cl/~jairo.bochi

[^0]: Date: September 27, 2018.
 ${ }^{1}$ Equivalently, q is a closest return time for the irrational rotation R_{α}.

