-			
(1)	ANOSOV REPRESENTATIONS & DOMIN	VATED SPLITTINGS (j	.w. J. Bochi & A. Sambarino)
I'	finitely generated group & P: Г→	G representation wi	th G Lie group (G = GL(d, R
P	AL: Understand representations which conticularly interesting is when the en	ane: taithful & on obedding f: r→G	is quan-isométric.
	e examples: → (quari)-Fuchrian rep → Hitchin representation. → Bensist representation. → Schotly groups → Those for which G	resentations)	Anosov representations (in the sense of Labourie)
Thm co	$(\text{Weil/Eshermann-Thurston}) \ \text{If} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	T. C : Caithful	a discrete and $G/C(\Gamma)$ is fill compact (and C^{I} is $F \neq D$ (quari-isom).
e'	is a deformation of t if I { t_{1}} u	ntimous path of de	formations from eto e.
regi	S: This is a tromoversality result. Go attively curved) and Guichard-Wienham be generalization involves the geodesic of from $D\Gamma \to G/\rho$ with $P < G/\rho$	l (for general Gramo) flow of Grom. hyp nabolic.	v hyp. groups).
Ма	lkes sense to search for equivalent for	mulatious (GGKV	V & KLP)
De	$f: \Gamma \rightarrow GL(d, R)$ is $p-domino$ one has $\frac{\sigma_p(e(x))}{\sigma_{p+1}(e(x))} > Ce^{\lambda x }$ $\int_{a}^{a} S_{d-p}(A)$	ted if $\exists C_1 \lambda > 0$ where $\sigma_i(A)$ $ Y = W_p(A)$	Such that if YET ith singular value of A ord length of YET resp fixed generator S.
			J No Commune of NA
(R)	em: No assumption on Γ , just finite of em: One can do the same for general	lie groups using	Cartan's projection

2) I will explain the main ideas of our proof (jw. J. Bochi & A. Sambarino) of the following results (that first appeared in KLP).

Thus 1 The set of p-dominated representations is open. (And all one quani-isometric.)

Thm2 If Γ admits a p-dominated representation $\rho: \Gamma \to G \to \Gamma$ is Gromon hyperbolic and ρ is Γ -Anorov (in the sense of Labourie/Guidhard-Wienhard for an adequate parabolic Γ).

Lyin part \exists limit maps from $\partial\Gamma$ to G/ρ .

Both results use DomiNATED SPLITTING (from smooth dynamics) which we will explain.

TOUESTION: Does the interior of the set of discrete & faithful supresentations from Γ (word hip) to $GL(d,\mathbb{R})$ contains representations which are not p-Anosov for no $p \in \{1,-,d-1\}$.

- · GGKW constructs QI repr. from Fz which is not stable.
- · If vank(G)=1, quari-isometry ⇒ p-dominated (convex cocompact)
- · Avila-Bochi-Yoccoz: In SL(2,1R), for Fz, interior of faithful (and discrete) representation are 1-dominated.
- a Sullivan: In SL(2,0) for Fz (and other Kleinian groups), the interior of faithful (and discrete) representation, are convex cocompact (p-dom for some p).
- Goldman: $PSL(2,\mathbb{R})$ for $\pi_1(\Sigma_g)$ non 1-dominated one either non faithful on non discrete. Not much move results. Related to STAPILITY CONJECTURE IN DIFF. DYNAMICS.
- §§ DOMINATED SPLITTING: (Matie \sim 1970, appears in works on diff eqns from 50's, 60's other name) X compact metric space & $\{\phi^t: X \to X\}_{t\in T}$ continuous dynamical system where

 $T=\mathbb{Z}$ or \mathbb{R} .

Let $E\xrightarrow{T}X$ a vector bundle over X, we denote $E_{x}=\pi^{-1}(x)$ the fibers.

Let E > X a vector bundle over X, we denote Ex=T (x) the titus.

An Elson 2 VE: E > E3ter is called a linear flow over (\$\phi^t\$) if To VE = \$\phi^t_{orr} (i.e. VE. Ex > E_{\phi})

and VE: Ex > Epix is a linear automorphism.

TExamples: $\rightarrow E = X \times \mathbb{R}^d$ if $T = \mathbb{Z} \Rightarrow \psi^{\dagger}$ is encoded by a choice $A: X \rightarrow GLd_1\mathbb{R}$) $\Rightarrow \text{providing.} \ \psi^{\dagger}(\sigma) = A(x) \cap \sigma$ if $V \in E_X$. (linear cocycle over $T = \phi^{\dagger}$) $\Rightarrow \text{If } E = TM \text{ and } \phi^{\dagger} = f: M \rightarrow M \text{ diffeo} \Rightarrow Df: TM \rightarrow M \text{ is linear flow.}$

'3) We say that {Ψ^t:E→E} admits a dominated splitting if ∃E=E^{CS}⊕E^{CL} continuous Ψ^t-invariant splitting and constants C, 2>0 such that

(Rem: Independent of the Riemannian metric.)

The following unit was shown by Bochi-Governelan generalising a 2-dim result of Avila-Bodi-Gozoz.

Correction: the 2-dim result is due to Yoccoz.

Thum (BG) The following one equivalent:

- 1) Wt admits a dominated splitting with dim Ec=p.
- 2) $\exists C_1 1>0$ s.t. $\frac{\nabla_P(\mathcal{V}^{t}/_{E_X})}{\nabla_{P_H}(\mathcal{V}^{t}/_{E_X})} > Ce^{At}$ (σ_i has seuse since there is a fixed Riem. metric)
- 3) I 4 = invariant come field of dimension p.

Shetch: 1) ⇒ 3) Clarrical: "Fibered Perron-Frobenius" 1) ⇒ 2) Direct.

2) \rightarrow 1) Condition 2) implies that $\bigcup_{p}(\mathcal{P}_{pk_{n}}^{t})$ converges uniformly (p exp) to a continuous \mathcal{P}_{n}^{t} inv bundle $\mathbb{E}^{cu}(x)$.

Also $S_{d-p}(\psi_{p^{t}(x)}^{-t}) \to E^{cs}(x)$.

One needs to show that $E(x) \oplus E(x) \quad \forall x \in X$: Use of Oseleclets thm.

Rem GGKW proves similar statement without use of Oseleclets thm (condition CLI)

and works for p-adic groups.

SE PROOF OF THEOREM 1

Quani-isometry is immediate as the distance in GL(d. IR) is comparable to log IIAII - log det(A). An exponential gap in singular values => translates into quani-isometry of the embedding.

To show that p-dominated is open we shall assume that I is Gromen hyperbolic and use a properties of such groups which is not elimentary. (discretivers of geod. flow)

Given $Y \in \Gamma$ we define its CONE TYPE as $C^{\dagger}(r) := \{ \eta \in \Gamma : |\eta \gamma | = |\eta | + |\gamma | \}$ (we have fixed sym. generating set S).

Fact: If C is a cone type and $a \in SnC \Rightarrow aC := C(ax)$ is well defined.

(i.e. $C = C^{\dagger}(r)$ for some r)

For Gromor hyperbolic groups, as a consequence of the classical Morre-Lemma it follows that there exists only finitely many cone types (Cannon).

We can associate to (r,s) a graph g with labels so that:

Vertices: Cone types. (labeled) edges If $\exists a \in S \cap C_1 = A$. $C_2 = C_2$ we have $C_4 \xrightarrow{a} C_2$.

One gets a finite automaton and if

A = { {ai} iex admissible sequence of labeled edges} one has that

A is a shift invariant subset of $S^{\mathbb{Z}}$ and contains ALL bi-infinite geodesics paring for through id. This set is "S-dense" in the group Γ .

One considers the linear cocycle over $T: \Lambda \to \Lambda$ shift thetermined by $A: \Lambda \to GLa.R$)

Translating p-domination one gets that condition (2) of BG-Theorem is satisfied Since condition (3) is clearly an open condition one obtains that closeby representations also give cocycles with dominated splitting. As A is "dense" in I one necovers the p-domination for closeby representations.

Remark: The conefields also allow to focate the subspaces, as an application we show that boundary maps vary analitically (result of BCLS), Höller exponents...

& PROOF OF THEOREM 2 (just that [is Gromov hyperbolic) We take the following

T(Bowritch) Γ is a non-elementary \iff \exists X compact, perfect metric space s.t. Γ acts on X Gromov hyp. group and the diagonal action of $\Gamma \cap X^{(3)}$ (distinct triples) is properly discontinuous and cocompact.

Remark: In this care X=71 equivariantly.

The proof is elementary but quite implied, I'll just present some key ingreduento.

Define $X = \bigcap \{U_p(P(s)): |Y| > m\} = \{all limits of U_p(P(s_m)) | \delta_m \to \infty\}$ Benoist for / GiGKW in gunual called LIMIT SET.

Up(P(s)), Up(P(s)) > E = A (Up(P(s)), Sd-p(P(s_m))) > S

This allows to push triples together, etc., etc...

To prove this lemma we use BG again, {consider

Ciky = { {Ai}_{iex}: ||Ai|| \le K, ||G(A_{mm}, A_m)|| > Ce^{\lambda m} } compact & comp

The cocycle $A_0: \mathbb{D}^p_{C,K,\mu} \to GL(A_1R)$ has dominated splitting thanhs to BG-Thm $\{A_i\}_{i\in\mathbb{Z}} \mapsto A_0$ and this gives good angles for good sequences.

The other ingredient is a linear algebra estimate (that works FOR EVERY group []) which is something like:

d(8,7) > v(181+191) - co - G/log d(Up((8)), Up(e(n)))

For p-dominated representations, this is enough to conclude.

Remark: Finer angle estimates also allow us to use these results to obtain a Movse-lemma in the symmetric space (recovering other results of KLP).

FINAL REMARK: All this works in general and does NOT use an important characteristic of (Anosov) rupresentations: Only Fintlely Many Matrices ARE INVOLVED. In GGKW some rusults make use of this fact (AMS) Also, in ABY some results use a similar fact and contrast with results false in more general setting. Problem: Understand this better.